BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 34215580)

  • 1. Systematic dissection of transcriptional regulatory networks by genome-scale and single-cell CRISPR screens.
    Lopes R; Sprouffske K; Sheng C; Uijttewaal ECH; Wesdorp AE; Dahinden J; Wengert S; Diaz-Miyar J; Yildiz U; Bleu M; Apfel V; Mermet-Meillon F; Krese R; Eder M; Olsen AV; Hoppe P; Knehr J; Carbone W; Cuttat R; Waldt A; Altorfer M; Naumann U; Weischenfeldt J; deWeck A; Kauffmann A; Roma G; Schübeler D; Galli GG
    Sci Adv; 2021 Jul; 7(27):. PubMed ID: 34215580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks.
    Rubin AJ; Parker KR; Satpathy AT; Qi Y; Wu B; Ong AJ; Mumbach MR; Ji AL; Kim DS; Cho SW; Zarnegar BJ; Greenleaf WJ; Chang HY; Khavari PA
    Cell; 2019 Jan; 176(1-2):361-376.e17. PubMed ID: 30580963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering essential cistromes using genome-wide CRISPR screens.
    Fei T; Li W; Peng J; Xiao T; Chen CH; Wu A; Huang J; Zang C; Liu XS; Brown M
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25186-25195. PubMed ID: 31727847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens.
    Liscovitch-Brauer N; Montalbano A; Deng J; Méndez-Mancilla A; Wessels HH; Moss NG; Kung CY; Sookdeo A; Guo X; Geller E; Jaini S; Smibert P; Sanjana NE
    Nat Biotechnol; 2021 Oct; 39(10):1270-1277. PubMed ID: 33927415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional CRISPR dissection of gene networks controlling human regulatory T cell identity.
    Schumann K; Raju SS; Lauber M; Kolb S; Shifrut E; Cortez JT; Skartsis N; Nguyen VQ; Woo JM; Roth TL; Yu R; Nguyen MLT; Simeonov DR; Nguyen DN; Targ S; Gate RE; Tang Q; Bluestone JA; Spitzer MH; Ye CJ; Marson A
    Nat Immunol; 2020 Nov; 21(11):1456-1466. PubMed ID: 32989329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A saturating mutagenesis CRISPR-Cas9-mediated functional genomic screen identifies
    Canver MC; Tripathi P; Bullen MJ; Olshansky M; Kumar Y; Wong LH; Turner SJ; Lessard S; Pinello L; Orkin SH; Das PP
    J Biol Chem; 2020 Nov; 295(47):15797-15809. PubMed ID: 32994224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulling the genome in opposite directions to dissect gene networks.
    Gersbach CA; Barrangou R
    Genome Biol; 2018 Mar; 19(1):42. PubMed ID: 29580291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding the noncoding genome via large-scale CRISPR screens.
    Shukla A; Huangfu D
    Curr Opin Genet Dev; 2018 Oct; 52():70-76. PubMed ID: 29913329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens.
    Gasperini M; Hill AJ; McFaline-Figueroa JL; Martin B; Kim S; Zhang MD; Jackson D; Leith A; Schreiber J; Noble WS; Trapnell C; Ahituv N; Shendure J
    Cell; 2019 Jan; 176(1-2):377-390.e19. PubMed ID: 30612741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-Free Estrogen Receptor
    Wang D; Lu R; Rempala G; Sadee W
    Mol Pharmacol; 2019 Oct; 96(4):430-440. PubMed ID: 31399483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution mapping of cancer cell networks using co-functional interactions.
    Boyle EA; Pritchard JK; Greenleaf WJ
    Mol Syst Biol; 2018 Dec; 14(12):e8594. PubMed ID: 30573688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of functional regulatory elements in the human genome using pooled CRISPR screens.
    Borys SM; Younger ST
    BMC Genomics; 2020 Jan; 21(1):107. PubMed ID: 32005150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenome rewiring in human pluripotent stem cells.
    Yan J; Huangfu D
    Trends Cell Biol; 2022 Mar; 32(3):259-271. PubMed ID: 34955367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Randomized CRISPR-Cas Transcriptional Perturbation Screening Reveals Protective Genes against Alpha-Synuclein Toxicity.
    Chen YC; Farzadfard F; Gharaei N; Chen WCW; Cao J; Lu TK
    Mol Cell; 2017 Oct; 68(1):247-257.e5. PubMed ID: 28985507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Based System Uncovers Key Regulators of Disease-Related Genes.
    Hampton T
    JAMA; 2017 Aug; 318(5):412-413. PubMed ID: 28763528
    [No Abstract]   [Full Text] [Related]  

  • 17. Systematic discovery and perturbation of regulatory genes in human T cells reveals the architecture of immune networks.
    Freimer JW; Shaked O; Naqvi S; Sinnott-Armstrong N; Kathiria A; Garrido CM; Chen AF; Cortez JT; Greenleaf WJ; Pritchard JK; Marson A
    Nat Genet; 2022 Aug; 54(8):1133-1144. PubMed ID: 35817986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Next-generation forward genetic screens: uniting high-throughput perturbations with single-cell analysis.
    Morris JA; Sun JS; Sanjana NE
    Trends Genet; 2024 Feb; 40(2):118-133. PubMed ID: 37989654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements.
    Thakore PI; D'Ippolito AM; Song L; Safi A; Shivakumar NK; Kabadi AM; Reddy TE; Crawford GE; Gersbach CA
    Nat Methods; 2015 Dec; 12(12):1143-9. PubMed ID: 26501517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic analysis of transcriptional networks directing progression of cell states during MGE development.
    Sandberg M; Taher L; Hu J; Black BL; Nord AS; Rubenstein JLR
    Neural Dev; 2018 Sep; 13(1):21. PubMed ID: 30217225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.