These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34215695)

  • 41. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids.
    Cenci U; Sibbald SJ; Curtis BA; Kamikawa R; Eme L; Moog D; Henrissat B; Maréchal E; Chabi M; Djemiel C; Roger AJ; Kim E; Archibald JM
    BMC Biol; 2018 Nov; 16(1):137. PubMed ID: 30482201
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plastid biogenesis, between light and shadows.
    López-Juez E
    J Exp Bot; 2007; 58(1):11-26. PubMed ID: 17108152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolutionary Dynamics of Cryptophyte Plastid Genomes.
    Kim JI; Moore CE; Archibald JM; Bhattacharya D; Yi G; Yoon HS; Shin W
    Genome Biol Evol; 2017 Jul; 9(7):1859-1872. PubMed ID: 28854597
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.
    Robertson DL; Tartar A
    Mol Biol Evol; 2006 May; 23(5):1048-55. PubMed ID: 16495348
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum.
    Minge MA; Shalchian-Tabrizi K; Tørresen OK; Takishita K; Probert I; Inagaki Y; Klaveness D; Jakobsen KS
    BMC Evol Biol; 2010 Jun; 10():191. PubMed ID: 20565933
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plastids and protein targeting.
    McFadden GI
    J Eukaryot Microbiol; 1999; 46(4):339-46. PubMed ID: 10461382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The complexity and evolution of the plastid-division machinery.
    Maple J; Møller SG
    Biochem Soc Trans; 2010 Jun; 38(3):783-8. PubMed ID: 20491665
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Transcriptional Cycle Is Suited to Daytime N
    Muñoz-Marín MDC; Shilova IN; Shi T; Farnelid H; Cabello AM; Zehr JP
    mBio; 2019 Jan; 10(1):. PubMed ID: 30602582
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane.
    Felsner G; Sommer MS; Gruenheit N; Hempel F; Moog D; Zauner S; Martin W; Maier UG
    Genome Biol Evol; 2011; 3():140-50. PubMed ID: 21081314
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Symbiotic nutrient exchange enhances the long-term survival of cassiosomes, the autonomous stinging-cell structures of
    Toullec G; Lyndby NH; Banc-Prandi G; Pogoreutz C; Martin Olmos C; Meibom A; Rädecker N
    mSphere; 2024 Jan; 9(1):e0032223. PubMed ID: 38088556
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis.
    Colleoni C; Linka M; Deschamps P; Handford MG; Dupree P; Weber AP; Ball SG
    Mol Biol Evol; 2010 Dec; 27(12):2691-701. PubMed ID: 20576760
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acquired phototrophy in ciliates: a review of cellular interactions and structural adaptations.
    Johnson MD
    J Eukaryot Microbiol; 2011; 58(3):185-95. PubMed ID: 21518077
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein targeting into plastids: a key to understanding the symbiogenetic acquisitions of plastids.
    Ishida K
    J Plant Res; 2005 Aug; 118(4):237-45. PubMed ID: 16044198
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Migration of the plastid genome to the nucleus in a peridinin dinoflagellate.
    Hackett JD; Yoon HS; Soares MB; Bonaldo MF; Casavant TL; Scheetz TE; Nosenko T; Bhattacharya D
    Curr Biol; 2004 Feb; 14(3):213-8. PubMed ID: 14761653
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis.
    Sarai C; Tanifuji G; Nakayama T; Kamikawa R; Takahashi K; Yazaki E; Matsuo E; Miyashita H; Ishida KI; Iwataki M; Inagaki Y
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5364-5375. PubMed ID: 32094181
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution.
    Keeling PJ
    Annu Rev Plant Biol; 2013; 64():583-607. PubMed ID: 23451781
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prospective function of FtsZ proteins in the secondary plastid of chlorarachniophyte algae.
    Hirakawa Y; Ishida K
    BMC Plant Biol; 2015 Nov; 15():276. PubMed ID: 26556725
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein import and the origin of red complex plastids.
    Gould SB; Maier UG; Martin WF
    Curr Biol; 2015 Jun; 25(12):R515-21. PubMed ID: 26079086
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A symbiosome membrane is not required for the actions of two host signalling compounds regulating photosynthesis in symbiotic algae isolated from cnidarians.
    Grant AJ; Trautman DA; Frankland S; Hinde R
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Jun; 135(2):337-45. PubMed ID: 12781834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.