These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 34215760)
1. Radiomics models based on enhanced computed tomography to distinguish clear cell from non-clear cell renal cell carcinomas. Wang P; Pei X; Yin XP; Ren JL; Wang Y; Ma LY; Du XG; Gao BL Sci Rep; 2021 Jul; 11(1):13729. PubMed ID: 34215760 [TBL] [Abstract][Full Text] [Related]
2. Differentiation of Clear Cell and Non-clear-cell Renal Cell Carcinoma through CT-based Radiomics Models and Nomogram. Cheng D; Abudikeranmu Y; Tuerdi B Curr Med Imaging; 2023; 19(9):1005-1017. PubMed ID: 36411581 [TBL] [Abstract][Full Text] [Related]
3. Prediction of ISUP grading of clear cell renal cell carcinoma using support vector machine model based on CT images. Sun X; Liu L; Xu K; Li W; Huo Z; Liu H; Shen T; Pan F; Jiang Y; Zhang M Medicine (Baltimore); 2019 Apr; 98(14):e15022. PubMed ID: 30946334 [TBL] [Abstract][Full Text] [Related]
4. Differentiation of clear cell and non-clear cell renal cell carcinomas by all-relevant radiomics features from multiphase CT: a VHL mutation perspective. Li ZC; Zhai G; Zhang J; Wang Z; Liu G; Wu GY; Liang D; Zheng H Eur Radiol; 2019 Aug; 29(8):3996-4007. PubMed ID: 30523454 [TBL] [Abstract][Full Text] [Related]
5. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Ding J; Xing Z; Jiang Z; Chen J; Pan L; Qiu J; Xing W Eur J Radiol; 2018 Jun; 103():51-56. PubMed ID: 29803385 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
7. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade. Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634 [TBL] [Abstract][Full Text] [Related]
8. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Nazari M; Shiri I; Hajianfar G; Oveisi N; Abdollahi H; Deevband MR; Oveisi M; Zaidi H Radiol Med; 2020 Aug; 125(8):754-762. PubMed ID: 32193870 [TBL] [Abstract][Full Text] [Related]
9. Computed tomography-based radiomics prediction of CTLA4 expression and prognosis in clear cell renal cell carcinoma. He H; Jin Z; Dai J; Wang H; Sun J; Xu D Cancer Med; 2023 Mar; 12(6):7627-7638. PubMed ID: 36397666 [TBL] [Abstract][Full Text] [Related]
10. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739 [TBL] [Abstract][Full Text] [Related]
11. CT-Based Radiomics Signature for Preoperative Prediction of Coagulative Necrosis in Clear Cell Renal Cell Carcinoma. Xu K; Liu L; Li W; Sun X; Shen T; Pan F; Jiang Y; Guo Y; Ding L; Zhang M Korean J Radiol; 2020 Jun; 21(6):670-683. PubMed ID: 32410406 [TBL] [Abstract][Full Text] [Related]
12. Multiphase comparative study for WHO/ISUP nuclear grading diagnostic model based on enhanced CT images of clear cell renal cell carcinoma. Lu C; Xia Y; Han J; Chen W; Qiao X; Gao R; Jiang X Sci Rep; 2024 May; 14(1):12043. PubMed ID: 38802547 [TBL] [Abstract][Full Text] [Related]
13. Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Shu J; Tang Y; Cui J; Yang R; Meng X; Cai Z; Zhang J; Xu W; Wen D; Yin H Eur J Radiol; 2018 Dec; 109():8-12. PubMed ID: 30527316 [TBL] [Abstract][Full Text] [Related]
14. Predictive models composed by radiomic features extracted from multi-detector computed tomography images for predicting low- and high- grade clear cell renal cell carcinoma: A STARD-compliant article. He X; Zhang H; Zhang T; Han F; Song B Medicine (Baltimore); 2019 Jan; 98(2):e13957. PubMed ID: 30633175 [TBL] [Abstract][Full Text] [Related]
15. Circularity Index on Contrast-Enhanced Computed Tomography Helps Distinguish Fat-Poor Angiomyolipoma from Renal Cell Carcinoma: Retrospective Analyses of Histologically Proven 257 Small Renal Tumors Less Than 4 cm. Kang HS; Park JJ Korean J Radiol; 2021 May; 22(5):735-741. PubMed ID: 33660463 [TBL] [Abstract][Full Text] [Related]
17. CT findings and clinical characteristics in distinguishing renal urothelial carcinoma mimicking renal cell carcinoma from clear cell renal cell carcinoma. Chen X; Feng X; Chen Y; Huang F; Long L BMC Urol; 2024 Jan; 24(1):4. PubMed ID: 38172791 [TBL] [Abstract][Full Text] [Related]
18. Integrative radiogenomics analysis for predicting molecular features and survival in clear cell renal cell carcinoma. Zeng H; Chen L; Wang M; Luo Y; Huang Y; Ma X Aging (Albany NY); 2021 Mar; 13(7):9960-9975. PubMed ID: 33795526 [TBL] [Abstract][Full Text] [Related]
19. Identification of novel biomarkers to distinguish clear cell and non-clear cell renal cell carcinoma using bioinformatics and machine learning. Panwoon C; Seubwai W; Thanee M; Sangkhamanon S PLoS One; 2024; 19(6):e0305252. PubMed ID: 38857246 [TBL] [Abstract][Full Text] [Related]
20. CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma. Demirjian NL; Varghese BA; Cen SY; Hwang DH; Aron M; Siddiqui I; Fields BKK; Lei X; Yap FY; Rivas M; Reddy SS; Zahoor H; Liu DH; Desai M; Rhie SK; Gill IS; Duddalwar V Eur Radiol; 2022 Apr; 32(4):2552-2563. PubMed ID: 34757449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]