BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 34215768)

  • 1. Consolidated bioprocessing for bioethanol production by metabolically engineered Bacillus subtilis strains.
    Maleki F; Changizian M; Zolfaghari N; Rajaei S; Noghabi KA; Zahiri HS
    Sci Rep; 2021 Jul; 11(1):13731. PubMed ID: 34215768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering lactic acid bacteria with pyruvate decarboxylase and alcohol dehydrogenase genes for ethanol production from Zymomonas mobilis.
    Nichols NN; Dien BS; Bothast RJ
    J Ind Microbiol Biotechnol; 2003 May; 30(5):315-21. PubMed ID: 12750944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metagenomic psychrohalophilic xylanase from camel rumen investigated for bioethanol production from wheat bran using Bacillus subtilis AP.
    Rajabi M; Nourisanami F; Ghadikolaei KK; Changizian M; Noghabi KA; Zahiri HS
    Sci Rep; 2022 May; 12(1):8152. PubMed ID: 35581279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.
    Yu KO; Jung J; Ramzi AB; Kim SW; Park C; Han SO
    Appl Biochem Biotechnol; 2012 Feb; 166(4):856-65. PubMed ID: 22161213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism.
    Romero S; Merino E; Bolívar F; Gosset G; Martinez A
    Appl Environ Microbiol; 2007 Aug; 73(16):5190-8. PubMed ID: 17586670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans.
    Lee JS; Chi WJ; Hong SK; Yang JW; Chang YK
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):6089-97. PubMed ID: 23681589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene.
    Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of metabolic pathways for bioconversion of lignocellulose to ethanol through genetic engineering.
    Chen J; Zhang W; Tan L; Wang Y; He G
    Biotechnol Adv; 2009; 27(5):593-8. PubMed ID: 19401227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase.
    Tian L; Perot SJ; Hon S; Zhou J; Liang X; Bouvier JT; Guss AM; Olson DG; Lynd LR
    Microb Cell Fact; 2017 Oct; 16(1):171. PubMed ID: 28978312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges.
    Sharma J; Kumar V; Prasad R; Gaur NA
    Biotechnol Adv; 2022; 56():107925. PubMed ID: 35151789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5.
    Saha B; Cotta MA
    Bioengineered; 2012; 3(4):197-202. PubMed ID: 22705843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rewiring Lactococcus lactis for ethanol production.
    Solem C; Dehli T; Jensen PR
    Appl Environ Microbiol; 2013 Apr; 79(8):2512-8. PubMed ID: 23377945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.
    Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new Zymomonas mobilis platform strain for the efficient production of chemicals.
    Frohwitter J; Behrendt G; Klamt S; Bettenbrock K
    Microb Cell Fact; 2024 May; 23(1):143. PubMed ID: 38773442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol.
    Favaro L; Jooste T; Basaglia M; Rose SH; Saayman M; Görgens JF; Casella S; van Zyl WH
    Bioengineered; 2013; 4(2):97-102. PubMed ID: 22989992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production.
    Todhanakasem T; Wu B; Simeon S
    World J Microbiol Biotechnol; 2020 Jul; 36(8):112. PubMed ID: 32656581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisiae.
    Wiedemann B; Boles E
    Appl Environ Microbiol; 2008 Apr; 74(7):2043-50. PubMed ID: 18263741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2003; 105 -108():457-69. PubMed ID: 12721468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered
    Cunha JT; Soares PO; Baptista SL; Costa CE; Domingues L
    Bioengineered; 2020 Dec; 11(1):883-903. PubMed ID: 32799606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.