These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 34215998)

  • 1. Microfluidic systems to study tissue barriers to immunotherapy.
    Ramirez A; Amosu M; Lee P; Maisel K
    Drug Deliv Transl Res; 2021 Dec; 11(6):2414-2429. PubMed ID: 34215998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic systems for modeling digestive cancer: a review of recent progress.
    Razavi Z; Soltani M; Pazoki-Toroudi H; Dabagh M
    Biomed Phys Eng Express; 2024 Aug; 10(5):. PubMed ID: 39142294
    [No Abstract]   [Full Text] [Related]  

  • 3. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment.
    Zhang J; Tavakoli H; Ma L; Li X; Han L; Li X
    Adv Drug Deliv Rev; 2022 Aug; 187():114365. PubMed ID: 35667465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic technologies for immunotherapy studies on solid tumours.
    Paterson K; Zanivan S; Glasspool R; Coffelt SB; Zagnoni M
    Lab Chip; 2021 Jun; 21(12):2306-2329. PubMed ID: 34085677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Targeting of Tumor Cells in a Microfluidic Tumor Model with Multiple Cell Types.
    van de Crommert B; Palacio-Castañeda V; Verdurmen WPR
    Methods Mol Biol; 2024; 2804():237-251. PubMed ID: 38753152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex Vivo Tumor-on-a-Chip Platforms to Study Intercellular Interactions within the Tumor Microenvironment.
    Kumar V; Varghese S
    Adv Healthc Mater; 2019 Feb; 8(4):e1801198. PubMed ID: 30516355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Tumor Models and Their Use for the Testing of Immunotherapies.
    Boucherit N; Gorvel L; Olive D
    Front Immunol; 2020; 11():603640. PubMed ID: 33362787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic endothelium-on-a-chip development, from in vivo to in vitro experimental models.
    Bulboacă AE; Boarescu PM; Melincovici CS; Mihu CM
    Rom J Morphol Embryol; 2020; 61(1):15-23. PubMed ID: 32747891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing Point-of-Care Applications with Droplet Microfluidics: From Single-Cell to Multicellular Analysis.
    Sharkey C; White R; Finocchiaro M; Thomas J; Estevam J; Konry T
    Annu Rev Biomed Eng; 2024 Jul; 26(1):119-139. PubMed ID: 38316063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microphysiological Systems for Cancer Immunotherapy Research and Development.
    Peng Y; Lee E
    Adv Biol (Weinh); 2024 Aug; 8(8):e2300077. PubMed ID: 37409385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organ-on-a-Chip for Cancer and Immune Organs Modeling.
    Sun W; Luo Z; Lee J; Kim HJ; Lee K; Tebon P; Feng Y; Dokmeci MR; Sengupta S; Khademhosseini A
    Adv Healthc Mater; 2019 Feb; 8(4):e1801363. PubMed ID: 30605261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Detection of Apoptosis Events Via Caspase 3/7 Activation in a Tumor-Immune Microenvironment on a Chip.
    Bertani FR; Moghaddam FD; Panella C; Giannitelli SM; Peluzzi V; Gerardino A; Rainer A; Roscilli G; De Ninno A; Businaro L
    Methods Mol Biol; 2024; 2748():109-118. PubMed ID: 38070111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic systems for modeling human development.
    Bonner MG; Gudapati H; Mou X; Musah S
    Development; 2022 Feb; 149(3):. PubMed ID: 35156682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Protocols for the Assessment of Anticancer Therapies in 3D Tumor-Stromal Cocultures.
    Paterson K; Zagnoni M
    Methods Mol Biol; 2023; 2679():127-139. PubMed ID: 37300612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivating human tissues and organs over lab-on-a-chip models: Recent progress and applications.
    Bhagat S; Singh S
    Prog Mol Biol Transl Sci; 2022; 187(1):205-240. PubMed ID: 35094775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic technologies for anticancer drug studies.
    Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M
    Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip recapitulation of the tumor microenvironment: A decade of progress.
    Giannitelli SM; Peluzzi V; Raniolo S; Roscilli G; Trombetta M; Mozetic P; Rainer A
    Biomaterials; 2024 Apr; 306():122482. PubMed ID: 38301325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organ-on-a-chip models for development of cancer immunotherapies.
    Chernyavska M; Masoudnia M; Valerius T; Verdurmen WPR
    Cancer Immunol Immunother; 2023 Dec; 72(12):3971-3983. PubMed ID: 37923890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.