These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 34216162)
1. Reliability of the hyperaemic response to passive leg movement in young, healthy women. Lew LA; Liu KR; Pyke KE Exp Physiol; 2021 Sep; 106(9):2013-2023. PubMed ID: 34216162 [TBL] [Abstract][Full Text] [Related]
2. Reliability of the passive leg movement assessment of vascular function in men. Groot HJ; Broxterman RM; Gifford JR; Garten RS; Rossman MJ; Jarrett CL; Kwon OS; Hydren JR; Richardson RS Exp Physiol; 2022 May; 107(5):541-552. PubMed ID: 35294784 [TBL] [Abstract][Full Text] [Related]
3. Delineating the age-related attenuation of vascular function: Evidence supporting the efficacy of the single passive leg movement as a screening tool. Hydren JR; Broxterman RM; Trinity JD; Gifford JR; Kwon OS; Kithas AC; Richardson RS J Appl Physiol (1985); 2019 Jun; 126(6):1525-1532. PubMed ID: 30946637 [TBL] [Abstract][Full Text] [Related]
4. Single passive leg movement assessment of vascular function: contribution of nitric oxide. Broxterman RM; Trinity JD; Gifford JR; Kwon OS; Kithas AC; Hydren JR; Nelson AD; Morgan DE; Jessop JE; Bledsoe AD; Richardson RS J Appl Physiol (1985); 2017 Dec; 123(6):1468-1476. PubMed ID: 28860173 [TBL] [Abstract][Full Text] [Related]
5. Single passive leg movement-induced hyperemia: a simple vascular function assessment without a chronotropic response. Venturelli M; Layec G; Trinity J; Hart CR; Broxterman RM; Richardson RS J Appl Physiol (1985); 2017 Jan; 122(1):28-37. PubMed ID: 27834672 [TBL] [Abstract][Full Text] [Related]
6. Nitric oxide and passive limb movement: a new approach to assess vascular function. Trinity JD; Groot HJ; Layec G; Rossman MJ; Ives SJ; Runnels S; Gmelch B; Bledsoe A; Richardson RS J Physiol; 2012 Mar; 590(6):1413-25. PubMed ID: 22310310 [TBL] [Abstract][Full Text] [Related]
7. Associations between noninvasive upper- and lower-limb vascular function assessments: extending the evidence to young women. D'Agata MN; Hoopes EK; Witman MA J Appl Physiol (1985); 2022 Oct; 133(4):886-892. PubMed ID: 36007894 [TBL] [Abstract][Full Text] [Related]
8. The passive leg movement technique for assessing vascular function: defining the distribution of blood flow and the impact of occluding the lower leg. Shields KL; Broxterman RM; Jarrett CL; Bisconti AV; Park SH; Richardson RS Exp Physiol; 2019 Oct; 104(10):1575-1584. PubMed ID: 31400019 [TBL] [Abstract][Full Text] [Related]
9. Nitric oxide-mediated vascular function in sepsis using passive leg movement as a novel assessment: a cross-sectional study. Nelson AD; Rossman MJ; Witman MA; Barrett-O'Keefe Z; Groot HJ; Garten RS; Richardson RS J Appl Physiol (1985); 2016 May; 120(9):991-9. PubMed ID: 26869709 [TBL] [Abstract][Full Text] [Related]
10. Pharmacological modulation of adrenergic tone alters the vasodilatory response to passive leg movement in young but not in old adults. Fermoyle CC; La Salle DT; Alpenglow JK; Craig JC; Jarrett CL; Broxterman RM; McKenzie AI; Morgan DE; Birgenheier NM; Wray DW; Richardson RS; Trinity JD J Appl Physiol (1985); 2023 May; 134(5):1124-1134. PubMed ID: 36927146 [TBL] [Abstract][Full Text] [Related]
12. Passive leg movement and nitric oxide-mediated vascular function: the impact of age. Trinity JD; Groot HJ; Layec G; Rossman MJ; Ives SJ; Morgan DE; Gmelch BS; Bledsoe A; Richardson RS Am J Physiol Heart Circ Physiol; 2015 Mar; 308(6):H672-9. PubMed ID: 25576629 [TBL] [Abstract][Full Text] [Related]
13. The passive leg movement technique for assessing vascular function: the impact of baseline blood flow. Shields KL; Broxterman RM; Jarrett CL; Bisconti AV; Park SH; Richardson RS Exp Physiol; 2021 Oct; 106(10):2133-2147. PubMed ID: 34411365 [TBL] [Abstract][Full Text] [Related]
14. Limb movement-induced hyperemia has a central hemodynamic component: evidence from a neural blockade study. Trinity JD; Amann M; McDaniel J; Fjeldstad AS; Barrett-O'Keefe Z; Runnels S; Morgan DE; Wray DW; Richardson RS Am J Physiol Heart Circ Physiol; 2010 Nov; 299(5):H1693-700. PubMed ID: 20802133 [TBL] [Abstract][Full Text] [Related]
15. Passive leg movement-induced hyperaemia with a spinal cord lesion: evidence of preserved vascular function. Venturelli M; Amann M; Layec G; McDaniel J; Trinity JD; Fjeldstad AS; Ives SJ; Yonnet G; Richardson RS Acta Physiol (Oxf); 2014 Feb; 210(2):429-39. PubMed ID: 24119139 [TBL] [Abstract][Full Text] [Related]
16. The role of the endothelium in the hyperemic response to passive leg movement: looking beyond nitric oxide. Trinity JD; Kwon OS; Broxterman RM; Gifford JR; Kithas AC; Hydren JR; Jarrett CL; Shields KL; Bisconti AV; Park SH; Craig JC; Nelson AD; Morgan DE; Jessop JE; Bledsoe AD; Richardson RS Am J Physiol Heart Circ Physiol; 2021 Feb; 320(2):H668-H678. PubMed ID: 33306447 [TBL] [Abstract][Full Text] [Related]
17. Altered vascular function in chronic kidney disease: evidence from passive leg movement. Katulka EK; Hirt AE; Kirkman DL; Edwards DG; Witman MAH Physiol Rep; 2019 Apr; 7(8):e14075. PubMed ID: 31016878 [TBL] [Abstract][Full Text] [Related]
18. Vascular function is related to blood flow during high-intensity, but not low-intensity, knee extension exercise. Hanson BE; Proffit M; Gifford JR J Appl Physiol (1985); 2020 Mar; 128(3):698-708. PubMed ID: 31917628 [TBL] [Abstract][Full Text] [Related]
19. Sleep duration regularity, but not sleep duration, is associated with microvascular function in college students. Hoopes EK; Berube FR; D'Agata MN; Patterson F; Farquhar WB; Edwards DG; Witman MAH Sleep; 2021 Feb; 44(2):. PubMed ID: 32905591 [TBL] [Abstract][Full Text] [Related]
20. The effect of the speed and range of motion of movement on the hyperemic response to passive leg movement. Gifford JR; Bloomfield T; Davis T; Addington A; McMullin E; Wallace T; Proffit M; Hanson B Physiol Rep; 2019 Apr; 7(8):e14064. PubMed ID: 31004411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]