BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34216405)

  • 21. A Rational Design of the Sintering-Resistant Au-CeO₂ Nanoparticles Catalysts for CO Oxidation: The Influence of H₂ Pretreatments.
    Sun Y; Liu W; Tian M; Wang L; Wang Z
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30321989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amorphous-Carbon-Supported Ultrasmall TiB
    Zhang X; Zhang X; Ren Z; Hu J; Gao M; Pan H; Liu Y
    Front Chem; 2020; 8():419. PubMed ID: 32500061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide.
    Tang H; Su Y; Zhang B; Lee AF; Isaacs MA; Wilson K; Li L; Ren Y; Huang J; Haruta M; Qiao B; Liu X; Jin C; Su D; Wang J; Zhang T
    Sci Adv; 2017 Oct; 3(10):e1700231. PubMed ID: 29043293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon-coated silica supported palladium for hydrogen production from formic acid - Exploring the influence of strong metal support interaction.
    Guo J; Hu S; Gao Z; Zhang X; Sun S
    J Colloid Interface Sci; 2024 Mar; 658():468-475. PubMed ID: 38118193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning Adsorbate-Mediated Strong Metal-Support Interaction by Oxygen Vacancy: A Case Study in Ru/TiO
    Li J; Zhang L; An X; Feng K; Wang X; He J; Huang Y; Liu J; Zhang L; Yan B; Li C; He L
    Angew Chem Int Ed Engl; 2024 May; ():e202407025. PubMed ID: 38742866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of Strong Metal-Support Interaction by Alkaline Earth Metal Salts.
    Qiu G; Pei Q; Yu Y; Jing Z; Wang J; He T; Chen P
    Chem Asian J; 2021 Sep; 16(18):2633-2640. PubMed ID: 34288552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective.
    Li G; Tang Z
    Nanoscale; 2014 Apr; 6(8):3995-4011. PubMed ID: 24622876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative Analysis of the Interface between Titanium Dioxide Support and Noble Metal by Electron Energy Loss Spectroscopy.
    Chen J; Qi Y; Lu M; Dong S; Zhang B
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):42104-42111. PubMed ID: 37615113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of metal-support interaction for tunable CO hydrogenation performance over Ru/TiO
    Lin H; Zhang W; Shen H; Yu H; An Y; Lin T; Zhong L
    Nanoscale; 2024 Mar; 16(12):6151-6162. PubMed ID: 38445306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasonication-Induced Strong Metal-Support Interaction Construction in Water Towards Enhanced Catalysis.
    Siniard KM; Li M; Yang SZ; Zhang J; Polo-Garzon F; Wu Z; Yang Z; Dai S
    Angew Chem Int Ed Engl; 2023 May; 62(20):e202214322. PubMed ID: 36696269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Developments in Reversible CO
    Kushwaha S; Parthiban J; Singh SK
    ACS Omega; 2023 Oct; 8(42):38773-38793. PubMed ID: 37901502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sinter-Resistant Nanoparticle Catalysts Achieved by 2D Boron Nitride-Based Strong Metal-Support Interactions: A New Twist on an Old Story.
    Chen H; Yang SZ; Yang Z; Lin W; Xu H; Wan Q; Suo X; Wang T; Jiang DE; Fu J; Dai S
    ACS Cent Sci; 2020 Sep; 6(9):1617-1627. PubMed ID: 32999937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong metal-support interaction between Pt and SiO
    Deng L; Miura H; Shishido T; Hosokawa S; Teramura K; Tanaka T
    Chem Commun (Camb); 2017 Jun; 53(51):6937-6940. PubMed ID: 28612887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strong Metal-Support Interactions through Sulfur-Anchoring of Metal Catalysts on Carbon Supports.
    Yin P; Yan QQ; Liang HW
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202302819. PubMed ID: 36972030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Significant Role of the Atomic Surface Structure of Support in Strong Metal-Support Interaction.
    Tang M; Wang Y
    Chemistry; 2022 Jul; 28(41):e202104519. PubMed ID: 35579495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere.
    Liu S; Xu W; Niu Y; Zhang B; Zheng L; Liu W; Li L; Wang J
    Nat Commun; 2019 Dec; 10(1):5790. PubMed ID: 31857592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic origins of the strong metal-support interaction in silica supported catalysts.
    Yang F; Zhao H; Wang W; Wang L; Zhang L; Liu T; Sheng J; Zhu S; He D; Lin L; He J; Wang R; Li Y
    Chem Sci; 2021 Oct; 12(38):12651-12660. PubMed ID: 34703550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.