BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34216714)

  • 1. Removing quote marks from the RNA polymerase II CTD 'code'.
    Dieci G
    Biosystems; 2021 Sep; 207():104468. PubMed ID: 34216714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain.
    Harlen KM; Churchman LS
    Nat Rev Mol Cell Biol; 2017 Apr; 18(4):263-273. PubMed ID: 28248323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cracking the RNA polymerase II CTD code.
    Egloff S; Murphy S
    Trends Genet; 2008 Jun; 24(6):280-8. PubMed ID: 18457900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CTD code of RNA polymerase II: a structural view.
    Jasnovidova O; Stefl R
    Wiley Interdiscip Rev RNA; 2013; 4(1):1-16. PubMed ID: 23042580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II.
    Venkat Ramani MK; Yang W; Irani S; Zhang Y
    J Mol Biol; 2021 Jul; 433(14):166912. PubMed ID: 33676925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function.
    Srivastava R; Ahn SH
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):856-72. PubMed ID: 26241863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An essential domain of an early-diverged RNA polymerase II functions to accurately decode a primitive chromatin landscape.
    Das A; Banday M; Fisher MA; Chang YJ; Rosenfeld J; Bellofatto V
    Nucleic Acids Res; 2017 Jul; 45(13):7886-7896. PubMed ID: 28575287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-transcriptional splicing and the CTD code.
    Custódio N; Carmo-Fonseca M
    Crit Rev Biochem Mol Biol; 2016 Sep; 51(5):395-411. PubMed ID: 27622638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Updating the RNA polymerase CTD code: adding gene-specific layers.
    Egloff S; Dienstbier M; Murphy S
    Trends Genet; 2012 Jul; 28(7):333-41. PubMed ID: 22622228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene-specific RNA polymerase II phosphorylation and the CTD code.
    Kim H; Erickson B; Luo W; Seward D; Graber JH; Pollock DD; Megee PC; Bentley DL
    Nat Struct Mol Biol; 2010 Oct; 17(10):1279-86. PubMed ID: 20835241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner.
    Nemec CM; Yang F; Gilmore JM; Hintermair C; Ho YH; Tseng SC; Heidemann M; Zhang Y; Florens L; Gasch AP; Eick D; Washburn MP; Varani G; Ansari AZ
    Proc Natl Acad Sci U S A; 2017 May; 114(20):E3944-E3953. PubMed ID: 28465432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C-Terminal Domain of RNA Polymerase II Is a Multivalent Targeting Sequence that Supports Drosophila Development with Only Consensus Heptads.
    Lu F; Portz B; Gilmour DS
    Mol Cell; 2019 Mar; 73(6):1232-1242.e4. PubMed ID: 30765194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling RNA Polymerase II Phosphorylation Genome-Wide in Fission Yeast.
    Kecman T; Heo DH; Vasiljeva L
    Methods Enzymol; 2018; 612():489-504. PubMed ID: 30502955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA.
    Kim E; Du L; Bregman DB; Warren SL
    J Cell Biol; 1997 Jan; 136(1):19-28. PubMed ID: 9008700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription by RNA polymerase II and the CTD-chromatin crosstalk.
    Singh N; Asalam M; Ansari MO; Gerasimova NS; Studitsky VM; Akhtar MS
    Biochem Biophys Res Commun; 2022 Apr; 599():81-86. PubMed ID: 35176629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA Pol II Dynamics Modulate Co-transcriptional Chromatin Modification, CTD Phosphorylation, and Transcriptional Direction.
    Fong N; Saldi T; Sheridan RM; Cortazar MA; Bentley DL
    Mol Cell; 2017 May; 66(4):546-557.e3. PubMed ID: 28506463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysines in the RNA Polymerase II C-Terminal Domain Contribute to TAF15 Fibril Recruitment.
    Janke AM; Seo DH; Rahmanian V; Conicella AE; Mathews KL; Burke KA; Mittal J; Fawzi NL
    Biochemistry; 2018 May; 57(17):2549-2563. PubMed ID: 28945358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.
    Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q
    Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression.
    Egloff S; O'Reilly D; Chapman RD; Taylor A; Tanzhaus K; Pitts L; Eick D; Murphy S
    Science; 2007 Dec; 318(5857):1777-9. PubMed ID: 18079403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.