BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34216901)

  • 1. The efficiency of microalgae biofilm in the phycoremediation of water from River Kaduna.
    Ugya AY; Ajibade FO; Hua X
    J Environ Manage; 2021 Oct; 295():113109. PubMed ID: 34216901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgae biofilm cultured in nutrient-rich water as a tool for the phycoremediation of petroleum-contaminated water.
    Ugya YA; Hasan DB; Tahir SM; Imam TS; Ari HA; Hua X
    Int J Phytoremediation; 2021; 23(11):1175-1183. PubMed ID: 33563031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Evaluation of
    Ahammed MS; Baten MA; Ali MA; Mahmud S; Islam MS; Thapa BS; Islam MA; Miah MA; Tusher TR
    Biology (Basel); 2023 May; 12(5):. PubMed ID: 37237489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phycoremediation potential of Chlorella sp. on the polluted Thirumanimutharu river water.
    Narayanan M; Prabhakaran M; Natarajan D; Kandasamy S; Raja R; Carvalho IS; Ashokkumar V; Chinnathambi A; Alharbi SA; Devarayan K; Pugazhendhi A
    Chemosphere; 2021 Aug; 277():130246. PubMed ID: 33780682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass production and phycoremediation of microalgae cultivated in polluted river water.
    Ummalyma SB; Singh A
    Bioresour Technol; 2022 May; 351():126948. PubMed ID: 35257884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of multivariate statistical techniques for the evaluation of temporal and spatial variations in water quality of the Kaduna River, Nigeria.
    Ogwueleka TC
    Environ Monit Assess; 2015 Mar; 187(3):137. PubMed ID: 25707603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the intrinsic bioremediation capacity of a complexly contaminated Yamuna River of India: a algae-specific approach.
    Kumar D; Agrawal S; Sahoo D
    Int J Phytoremediation; 2023; 25(13):1844-1858. PubMed ID: 37088802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm phosphorus uptake capacity as a tool for the assessment of pollutant effects in river ecosystems.
    Proia L; Romaní A; Sabater S
    Ecotoxicology; 2017 Mar; 26(2):271-282. PubMed ID: 28108888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility and comparative analysis of cadmium biosorption by living scenedesmus obliquus FACHB-12 biofilms.
    Ma X; Yan X; Yao J; Zheng S; Wei Q
    Chemosphere; 2021 Jul; 275():130125. PubMed ID: 33677276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental fate of aquatic pollutants and their mitigation by phycoremediation for the clean and sustainable environment: A review.
    Thanigaivel S; Vinayagam S; Gnanasekaran L; Suresh R; Soto-Moscoso M; Chen WH
    Environ Res; 2024 Jan; 240(Pt 1):117460. PubMed ID: 37866533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential for bifenthrin removal using microalgae from a natural source.
    Weis L; de Cassia de Souza Schneider R; Hoeltz M; Rieger A; Tostes S; Lobo EA
    Water Sci Technol; 2020 Sep; 82(6):1131-1141. PubMed ID: 33055403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental effects of crude oil spill on the physicochemical and hydrobiological characteristics of the Nun River, Niger Delta.
    Ifelebuegu AO; Ukpebor JE; Ahukannah AU; Nnadi EO; Theophilus SC
    Environ Monit Assess; 2017 Apr; 189(4):173. PubMed ID: 28321680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bacillus sp. isolated from sediments of the Sarno River mouth, Gulf of Naples (Italy) produces a biofilm biosorbing Pb(II).
    Pepi M; Borra M; Tamburrino S; Saggiomo M; Viola A; Biffali E; Balestra C; Sprovieri M; Casotti R
    Sci Total Environ; 2016 Aug; 562():588-595. PubMed ID: 27110973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phycoremediation for carbon neutrality and circular economy: Potential, trends, and challenges.
    Rambabu K; Avornyo A; Gomathi T; Thanigaivelan A; Show PL; Banat F
    Bioresour Technol; 2023 Jan; 367():128257. PubMed ID: 36343781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Could benthic biofilm analyses be used as a reliable proxy for freshwater environmental health?
    Pu Y; Ngan WY; Yao Y; Habimana O
    Environ Pollut; 2019 Sep; 252(Pt A):440-449. PubMed ID: 31158672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the combination of aeration and biofilm technology on transformation of nitrogen in black-odor river.
    Pan M; Zhao J; Zhen S; Heng S; Wu J
    Water Sci Technol; 2016; 74(3):655-62. PubMed ID: 27508370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of spatial and temporal variations in water quality by the application of multivariate statistical methods in the Kali River, Uttar Pradesh, India.
    Singh G; Patel N; Jindal T; Srivastava P; Bhowmik A
    Environ Monit Assess; 2020 May; 192(6):394. PubMed ID: 32458103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river.
    Proia L; Lupini G; Osorio V; Pérez S; Barceló D; Schwartz T; Amalfitano S; Fazi S; Romaní AM; Sabater S
    Chemosphere; 2013 Aug; 92(9):1126-35. PubMed ID: 23434260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioremediation and biomass production of microalgae cultivation in river watercontaminated with pharmaceutical effluent.
    Singh A; Ummalyma SB; Sahoo D
    Bioresour Technol; 2020 Jul; 307():123233. PubMed ID: 32240927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water quality assessment of Ganga river in Bihar Region, India.
    Tiwary RK; Rajak GP; Abhishek ; Mondal MR
    J Environ Sci Eng; 2005 Oct; 47(4):326-35. PubMed ID: 17051921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.