These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 34216924)
1. An inverted in vitro triple culture model of the healthy and inflamed intestine: Adverse effects of polyethylene particles. Busch M; Kämpfer AAM; Schins RPF Chemosphere; 2021 Dec; 284():131345. PubMed ID: 34216924 [TBL] [Abstract][Full Text] [Related]
2. Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine. Busch M; Bredeck G; Kämpfer AAM; Schins RPF Environ Res; 2021 Feb; 193():110536. PubMed ID: 33253701 [TBL] [Abstract][Full Text] [Related]
3. Impact of polyethylene nanoplastics on human intestinal cells. El Basset W; Cornu R; Zaiter T; Jacquin L; Pellequer Y; Moulari B; Diab-Assaf M; Brunel F; Monteil V; Béduneau A Nanotoxicology; 2024 Aug; 18(5):499-510. PubMed ID: 39207115 [TBL] [Abstract][Full Text] [Related]
4. Micro-sized polyethylene particles affect cell viability and oxidative stress responses in human colorectal adenocarcinoma Caco-2 and HT-29 cells. Herrala M; Huovinen M; Järvelä E; Hellman J; Tolonen P; Lahtela-Kakkonen M; Rysä J Sci Total Environ; 2023 Apr; 867():161512. PubMed ID: 36626990 [TBL] [Abstract][Full Text] [Related]
5. Uptake and cellular effects of PE, PP, PET and PVC microplastic particles. Stock V; Laurisch C; Franke J; Dönmez MH; Voss L; Böhmert L; Braeuning A; Sieg H Toxicol In Vitro; 2021 Feb; 70():105021. PubMed ID: 33049312 [TBL] [Abstract][Full Text] [Related]
6. A novel 3D intestine barrier model to study the immune response upon exposure to microplastics. Lehner R; Wohlleben W; Septiadi D; Landsiedel R; Petri-Fink A; Rothen-Rutishauser B Arch Toxicol; 2020 Jul; 94(7):2463-2479. PubMed ID: 32307674 [TBL] [Abstract][Full Text] [Related]
7. Model Complexity as Determining Factor for In Vitro Nanosafety Studies: Effects of Silver and Titanium Dioxide Nanomaterials in Intestinal Models. Kämpfer AAM; Busch M; Büttner V; Bredeck G; Stahlmecke B; Hellack B; Masson I; Sofranko A; Albrecht C; Schins RPF Small; 2021 Apr; 17(15):e2004223. PubMed ID: 33458953 [TBL] [Abstract][Full Text] [Related]
8. Deoxynivalenol increases pro-inflammatory cytokine secretion and reduces primary bile acid transport in an inflamed intestinal in vitro co-culture model. Wang J; Bakker W; de Haan L; Bouwmeester H Food Res Int; 2023 Nov; 173(Pt 1):113323. PubMed ID: 37803634 [TBL] [Abstract][Full Text] [Related]
9. Development of an in vitro co-culture model to mimic the human intestine in healthy and diseased state. Kämpfer AAM; Urbán P; Gioria S; Kanase N; Stone V; Kinsner-Ovaskainen A Toxicol In Vitro; 2017 Dec; 45(Pt 1):31-43. PubMed ID: 28807632 [TBL] [Abstract][Full Text] [Related]
10. An inverse cell culture model for floating plastic particles. Stock V; Böhmert L; Dönmez MH; Lampen A; Sieg H Anal Biochem; 2020 Feb; 591():113545. PubMed ID: 31846620 [TBL] [Abstract][Full Text] [Related]
11. Complex intestinal and hepatic in vitro barrier models reveal information on uptake and impact of micro-, submicro- and nanoplastics. Paul MB; Böhmert L; Hsiao IL; Braeuning A; Sieg H Environ Int; 2023 Sep; 179():108172. PubMed ID: 37657408 [TBL] [Abstract][Full Text] [Related]
13. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Antunes F; Andrade F; Araújo F; Ferreira D; Sarmento B Eur J Pharm Biopharm; 2013 Apr; 83(3):427-35. PubMed ID: 23159710 [TBL] [Abstract][Full Text] [Related]
14. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Béduneau A; Tempesta C; Fimbel S; Pellequer Y; Jannin V; Demarne F; Lamprecht A Eur J Pharm Biopharm; 2014 Jul; 87(2):290-8. PubMed ID: 24704198 [TBL] [Abstract][Full Text] [Related]
15. Ingested Engineered Nanomaterials Affect the Expression of Mucin Genes-An In Vitro-In Vivo Comparison. Bredeck G; Kämpfer AAM; Sofranko A; Wahle T; Büttner V; Albrecht C; Schins RPF Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685068 [TBL] [Abstract][Full Text] [Related]
16. Do foodborne polyethylene microparticles affect the health of rainbow trout (Oncorhynchus mykiss)? Hodkovicova N; Hollerova A; Caloudova H; Blahova J; Franc A; Garajova M; Lenz J; Tichy F; Faldyna M; Kulich P; Mares J; Machat R; Enevova V; Svobodova Z Sci Total Environ; 2021 Nov; 793():148490. PubMed ID: 34174619 [TBL] [Abstract][Full Text] [Related]
17. Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B Coculture Models To Predict Intestinal and Colonic Permeability Compared to Caco-2 Monoculture. Lozoya-Agullo I; Araújo F; González-Álvarez I; Merino-Sanjuán M; González-Álvarez M; Bermejo M; Sarmento B Mol Pharm; 2017 Apr; 14(4):1264-1270. PubMed ID: 28263609 [TBL] [Abstract][Full Text] [Related]
18. In vitro toxicity from a physical perspective of polyethylene microplastics based on statistical curvature change analysis. Choi D; Hwang J; Bang J; Han S; Kim T; Oh Y; Hwang Y; Choi J; Hong J Sci Total Environ; 2021 Jan; 752():142242. PubMed ID: 33207500 [TBL] [Abstract][Full Text] [Related]
19. Biorelevant media resistant co-culture model mimicking permeability of human intestine. Antoine D; Pellequer Y; Tempesta C; Lorscheidt S; Kettel B; Tamaddon L; Jannin V; Demarne F; Lamprecht A; Béduneau A Int J Pharm; 2015 Mar; 481(1-2):27-36. PubMed ID: 25601199 [TBL] [Abstract][Full Text] [Related]
20. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Schymanski D; Goldbeck C; Humpf HU; Fürst P Water Res; 2018 Feb; 129():154-162. PubMed ID: 29145085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]