These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 34216950)

  • 1. Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect.
    Lin HP; Chen LJ
    J Colloid Interface Sci; 2021 Dec; 603():539-549. PubMed ID: 34216950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of the rose petal effect over single- and dual-scale roughness surfaces.
    Yeh KY; Cho KH; Yeh YH; Promraksa A; Huang CH; Hsu CC; Chen LJ
    Nanotechnology; 2014 Aug; 25(34):345303. PubMed ID: 25100802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface.
    Promraksa A; Chuang YC; Chen LJ
    J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact angle hysteresis on regular pillar-like hydrophobic surfaces.
    Yeh KY; Chen LJ; Chang JY
    Langmuir; 2008 Jan; 24(1):245-51. PubMed ID: 18067331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State.
    Tzitzilis D; Tsekeridis C; Ntakoumis I; Papadopoulos P
    Langmuir; 2024 Jul; 40(26):13422-13427. PubMed ID: 38825812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling states of water droplets on nanostructured surfaces by design.
    Zhu C; Gao Y; Huang Y; Li H; Meng S; Francisco JS; Zeng XC
    Nanoscale; 2017 Nov; 9(46):18240-18245. PubMed ID: 29104978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic-Responsive Superhydrophobic Surface of Magnetorheological Elastomers Mimicking from Lotus Leaves to Rose Petals.
    Chen S; Zhu M; Zhang Y; Dong S; Wang X
    Langmuir; 2021 Feb; 37(7):2312-2321. PubMed ID: 33544610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface.
    Koishi T; Yasuoka K; Fujikawa S; Ebisuzaki T; Zeng XC
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8435-40. PubMed ID: 19429707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wetting transitions in adhesive surfaces of polystyrene: The petal effect.
    Jonguitud-Flores S; Yáñez-Soto B; Pérez E; Sánchez-Balderas G
    J Colloid Interface Sci; 2024 Jun; 674():178-185. PubMed ID: 38925063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting State Transition of Laser Direct Writing Aluminum Surface Based on Coupling Effect of Micro/Nanoscale Characteristics.
    Wan Q; Hu X; Yu T; Guo P; Wang J; Shi H; Chen S
    Langmuir; 2024 Jul; ():. PubMed ID: 39007690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces.
    He X; Wang YF; Zhang BX; Wang SL; Yang YR; Wang XD; Lee DJ
    Langmuir; 2021 Dec; 37(50):14571-14581. PubMed ID: 34894696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaporation of water droplets on soft patterned surfaces.
    Chuang YC; Chu CK; Lin SY; Chen LJ
    Soft Matter; 2014 May; 10(19):3394-403. PubMed ID: 24643481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting of Surfaces Made of Hydrophobic Cavities.
    Lloyd BP; Bartlett PN; Wood RJ
    Langmuir; 2015 Sep; 31(34):9325-30. PubMed ID: 26267302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the petal effect: Wetting properties and surface structure of natural rose petals and rose petal-derived surfaces.
    Parra-Vicente S; Ibáñez-Ibáñez PF; Cabrerizo-Vílchez M; Sánchez-Almazo I; Rodríguez-Valverde MÁ; Ruiz-Cabello FJM
    Colloids Surf B Biointerfaces; 2024 Apr; 236():113832. PubMed ID: 38447447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials.
    Schulte AJ; Droste DM; Koch K; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():228-36. PubMed ID: 21977435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Bormashenko E
    J Colloid Interface Sci; 2007 Jul; 311(1):212-6. PubMed ID: 17359990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.