These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 34217021)
41. Active biochar-supported iron oxides for Cr(VI) removal from groundwater: Kinetics, stability and the key role of FeO in electron-transfer mechanism. Yang F; Jiang Y; Dai M; Hou X; Peng C J Hazard Mater; 2022 Feb; 424(Pt C):127542. PubMed ID: 34740162 [TBL] [Abstract][Full Text] [Related]
42. Pyrolysis temperature and feedstock affected Cr(VI) removal capacity of sulfidated zerovalent iron: Importance of surface area and electrical conductivity. Zhao C; Liu L; Yang X; Liu C; Wang B; Mao X; Zhang J; Shi J; Yin W; Wang X; Wang S Chemosphere; 2022 Jun; 296():133927. PubMed ID: 35167834 [TBL] [Abstract][Full Text] [Related]
43. Pyrolyzed fabrication of N/P co-doped biochars from (NH Li J; He F; Shen X; Hu D; Huang Q Bioresour Technol; 2020 Nov; 315():123840. PubMed ID: 32693347 [TBL] [Abstract][Full Text] [Related]
44. Removal of hexavalent chromium by biochar supported nZVI composite: Batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention. Fan Z; Zhang Q; Gao B; Li M; Liu C; Qiu Y Chemosphere; 2019 Feb; 217():85-94. PubMed ID: 30414546 [TBL] [Abstract][Full Text] [Related]
45. Influence of lignin and cellulose from termite-processed biomass on biochar production and evaluation of chromium VI adsorption. Kopp Alves A; Hauschild T; Basegio TM; Amorim Berutti F Sci Rep; 2024 Jun; 14(1):14937. PubMed ID: 38942919 [TBL] [Abstract][Full Text] [Related]
46. Remediation of Cu(II) and its adsorption mechanism in aqueous system by novel magnetic biochar derived from co-pyrolysis of sewage sludge and biomass. Zhao B; Xu X; Zhang R; Cui M Environ Sci Pollut Res Int; 2021 Apr; 28(13):16408-16419. PubMed ID: 33387322 [TBL] [Abstract][Full Text] [Related]
47. Magnetic-watermelon rinds biochar for uranium-contaminated water treatment using an electromagnetic semi-batch column with removal mechanistic investigations. Lingamdinne LP; Choi JS; Angaru GKR; Karri RR; Yang JK; Chang YY; Koduru JR Chemosphere; 2022 Jan; 286(Pt 2):131776. PubMed ID: 34371355 [TBL] [Abstract][Full Text] [Related]
48. Biochars produced from various agro-industrial by-products applied in Cr(VI) adsorption-reduction processes. Penido ES; Oliveira MA; Sales ALR; Ferrazani JC; Magalhães F; Bianchi ML; Melo LCA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(13):1387-1396. PubMed ID: 34747687 [TBL] [Abstract][Full Text] [Related]
49. Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar? Yang C; Ge C; Li X; Li L; Wang B; Lin A; Yang W Ecotoxicol Environ Saf; 2021 Jan; 208():111552. PubMed ID: 33396093 [TBL] [Abstract][Full Text] [Related]
50. Coupling of kenaf Biochar and Magnetic BiFeO Zhou D; Xie G; Hu X; Cai X; Zhao Y; Hu X; Jin Q; Fu X; Tan X; Liang C; Lai K; Wang H; Tang C Int J Environ Res Public Health; 2020 Jan; 17(3):. PubMed ID: 32012702 [TBL] [Abstract][Full Text] [Related]
51. KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr(VI), Pb(II) and Cd(II). Herath A; Layne CA; Perez F; Hassan EB; Pittman CU; Mlsna TE Chemosphere; 2021 Apr; 269():128409. PubMed ID: 33069440 [TBL] [Abstract][Full Text] [Related]
52. Facile preparation of magnetic porous biochars from tea waste for the removal of tetracycline from aqueous solutions: Effect of pyrolysis temperature. Li B; Zhang Y; Xu J; Fan S; Xu H Chemosphere; 2022 Mar; 291(Pt 3):132713. PubMed ID: 34710446 [TBL] [Abstract][Full Text] [Related]
53. Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains. Lian G; Wang B; Lee X; Li L; Liu T; Lyu W Sci Total Environ; 2019 Dec; 697():134119. PubMed ID: 32380611 [TBL] [Abstract][Full Text] [Related]
54. Magnetic porous biochar with nanostructure surface derived from penicillin fermentation dregs pyrolysis with K Wang Q; Zhang Z; Xu G; Li G Bioresour Technol; 2021 May; 327():124818. PubMed ID: 33581375 [TBL] [Abstract][Full Text] [Related]
55. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Zhou L; Liu Y; Liu S; Yin Y; Zeng G; Tan X; Hu X; Hu X; Jiang L; Ding Y; Liu S; Huang X Bioresour Technol; 2016 Oct; 218():351-9. PubMed ID: 27376834 [TBL] [Abstract][Full Text] [Related]
56. Exploring different mechanisms of biochars in removing hexavalent chromium: Sorption, reduction and electron shuttle. Wan J; Liu F; Wang G; Liang W; Peng C; Zhang W; Lin K; Yang J Bioresour Technol; 2021 Oct; 337():125382. PubMed ID: 34126357 [TBL] [Abstract][Full Text] [Related]
57. Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on O-rich and N-rich biochars. Zhao N; Zhao C; Tsang DCW; Liu K; Zhu L; Zhang W; Zhang J; Tang Y; Qiu R J Hazard Mater; 2021 Feb; 404(Pt A):124162. PubMed ID: 33065456 [TBL] [Abstract][Full Text] [Related]
58. Amine-functionalized magnetic biochars derived from invasive plants Alternanthera philoxeroides for enhanced efficient removal of Cr(VI): performance, kinetics and mechanism studies. Luo X; Du H; Zhang X; Yang Y Environ Sci Pollut Res Int; 2022 Nov; 29(51):78092-78106. PubMed ID: 35689769 [TBL] [Abstract][Full Text] [Related]
59. Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies. Zhang X; Fu W; Yin Y; Chen Z; Qiu R; Simonnot MO; Wang X Bioresour Technol; 2018 Nov; 268():149-157. PubMed ID: 30077171 [TBL] [Abstract][Full Text] [Related]
60. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Ma Y; Liu WJ; Zhang N; Li YS; Jiang H; Sheng GP Bioresour Technol; 2014 Oct; 169():403-408. PubMed ID: 25069094 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]