These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 3421724)

  • 1. The influence of heme-binding proteins in heme-catalyzed oxidations.
    Vincent SH; Grady RW; Shaklai N; Snider JM; Muller-Eberhard U
    Arch Biochem Biophys; 1988 Sep; 265(2):539-50. PubMed ID: 3421724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of iron-catalyzed DNA and lipid oxidation.
    Djuric Z; Potter DW; Taffe BG; Strasburg GM
    J Biochem Mol Toxicol; 2001; 15(2):114-9. PubMed ID: 11284053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation.
    Miller DM; Aust SD
    Arch Biochem Biophys; 1989 May; 271(1):113-9. PubMed ID: 2712569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes.
    Cederbaum AI; Qureshi A
    Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of in vitro heme-induced LDL oxidation: effects of antioxidants.
    Klouche K; Morena M; Canaud B; Descomps B; Beraud JJ; Cristol JP
    Eur J Clin Invest; 2004 Sep; 34(9):619-25. PubMed ID: 15379761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid peroxidation stimulated by iron nitrilotriacetate in rat liver.
    Goddard JG; Basford D; Sweeney GD
    Biochem Pharmacol; 1986 Jul; 35(14):2381-7. PubMed ID: 3729994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsomal reduction of low-molecular-weight Fe3+ chelates and ferritin: enhancement by adriamycin, paraquat, menadione, and anthraquinone 2-sulfonate and inhibition by oxygen.
    Vile GF; Winterbourn CC
    Arch Biochem Biophys; 1988 Dec; 267(2):606-13. PubMed ID: 2850767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of in vitro lipid peroxidation by 21-aminosteroids. Evidence for differential mechanisms.
    Ryan TP; Steenwyk RC; Pearson PG; Petry TW
    Biochem Pharmacol; 1993 Sep; 46(5):877-84. PubMed ID: 8373438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen peroxide and hematin in microsomal lipid peroxidation.
    Ursini F; Maiorino M; Ferri L; Valente M; Gregolin C
    J Inorg Biochem; 1981 Oct; 15(2):163-9. PubMed ID: 7288441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of cytochrome b5 in NADH-dependent microsomal reduction of ferric complexes, lipid peroxidation, and hydrogen peroxide generation.
    Yang MX; Cederbaum AI
    Arch Biochem Biophys; 1995 Dec; 324(2):282-92. PubMed ID: 8554320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of protein carbonyl formation and lipid peroxidation by glutathione in rat liver microsomes.
    Palamanda JR; Kehrer JP
    Arch Biochem Biophys; 1992 Feb; 293(1):103-9. PubMed ID: 1731626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E; Cederbaum AI
    Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid peroxidation induced by indomethacin with horseradish peroxidase and hydrogen peroxide: involvement of indomethacin radicals.
    Miura T; Muraoka S; Fujimoto Y
    Biochem Pharmacol; 2002 Jun; 63(11):2069-74. PubMed ID: 12093485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xanthine oxidase-catalyzed crosslinking of cell membrane proteins.
    Girotti AW; Thomas JP; Jordan JE
    Arch Biochem Biophys; 1986 Dec; 251(2):639-53. PubMed ID: 3800391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron binding to microsomes and liposomes in relation to lipid peroxidation.
    Vile GF; Winterbourn CC
    FEBS Lett; 1987 May; 215(1):151-4. PubMed ID: 3106090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals.
    Kukiełka E; Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1989 Sep; 273(2):319-30. PubMed ID: 2774554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid binding protein: stimulation of microsomal phosphatidic acid formation.
    Jolly CA; Hubbell T; Behnke WD; Schroeder F
    Arch Biochem Biophys; 1997 May; 341(1):112-21. PubMed ID: 9143360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of methemoglobin, hemin and ferric citrate in catalyzing protein tyrosine nitration, protein oxidation and lipid peroxidation in a bovine serum albumin-liposome system: influence of pH.
    Gao P; Song Y; Li H; Gao Z
    J Inorg Biochem; 2009 May; 103(5):783-90. PubMed ID: 19264360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen reduction and lipid peroxidation by iron chelates with special reference to ferric nitrilotriacetate.
    Hamazaki S; Okada S; Li JL; Toyokuni S; Midorikawa O
    Arch Biochem Biophys; 1989 Jul; 272(1):10-7. PubMed ID: 2500058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-phosphate complexes as an inhibitor of iron-induced lipid peroxidation.
    Dawra RK; Sharma OP; Makkar HP
    Biochem Int; 1989 Mar; 18(3):537-44. PubMed ID: 2764960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.