These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

636 related articles for article (PubMed ID: 34217307)

  • 1. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study.
    Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N
    J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy.
    Kim SK; Park D; Yoo B; Shim D; Choi JO; Choi TY; Park ES
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An impairment-specific hip exoskeleton assistance for gait training in subjects with acquired brain injury: a feasibility study.
    Livolsi C; Conti R; Guanziroli E; Friðriksson Þ; Alexandersson Á; Kristjánsson K; Esquenazi A; Molino Lova R; Romo D; Giovacchini F; Crea S; Molteni F; Vitiello N
    Sci Rep; 2022 Nov; 12(1):19343. PubMed ID: 36369462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Home-based treadmill training to improve gait performance in persons with a chronic transfemoral amputation.
    Darter BJ; Nielsen DH; Yack HJ; Janz KF
    Arch Phys Med Rehabil; 2013 Dec; 94(12):2440-2447. PubMed ID: 23954560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis.
    Yeung LF; Ockenfeld C; Pang MK; Wai HW; Soo OY; Li SW; Tong KY
    J Neuroeng Rehabil; 2018 Jun; 15(1):51. PubMed ID: 29914523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Walking abilities improvements are associated with pelvis and trunk kinematic adaptations in transfemoral amputees after rehabilitation.
    Persine S; Leteneur S; Gillet C; Bassement J; Charlaté F; Simoneau-Buessinger E
    Clin Biomech (Bristol, Avon); 2022 Apr; 94():105619. PubMed ID: 35306365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of soft robotic exoskeleton for gait training on clinical and biomechanical gait outcomes in patients with sub-acute stroke: a randomized controlled pilot study.
    Xie R; Zhang Y; Jin H; Yang F; Feng Y; Pan Y
    Front Neurol; 2023; 14():1296102. PubMed ID: 38020601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait training using a robotic hip exoskeleton improves metabolic gait efficiency in the elderly.
    Martini E; Crea S; Parri A; Bastiani L; Faraguna U; McKinney Z; Molino-Lova R; Pratali L; Vitiello N
    Sci Rep; 2019 May; 9(1):7157. PubMed ID: 31073188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial.
    Straudi S; Manfredini F; Lamberti N; Zamboni P; Bernardi F; Marchetti G; Pinton P; Bonora M; Secchiero P; Tisato V; Volpato S; Basaglia N
    Trials; 2017 Feb; 18(1):88. PubMed ID: 28241776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of orthotic gait training with powered hip orthosis on walking in paraplegic patients.
    Arazpour M; Bani MA; Hutchins SW; Curran S; Javanshir MA; Mousavi ME
    Disabil Rehabil Assist Technol; 2014 May; 9(3):226-30. PubMed ID: 24749556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training for Walking Efficiency With a Wearable Hip-Assist Robot in Patients With Stroke: A Pilot Randomized Controlled Trial.
    Lee HJ; Lee SH; Seo K; Lee M; Chang WH; Choi BO; Ryu GH; Kim YH
    Stroke; 2019 Dec; 50(12):3545-3552. PubMed ID: 31623545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased Symmetry of Lower-Limb Amputees Walking With Concurrent Bilateral Vibrotactile Feedback.
    Martini E; Cesini I; D'Abbraccio J; Arnetoli G; Doronzio S; Giffone A; Meoni B; Oddo CM; Vitiello N; Crea S
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():74-84. PubMed ID: 33125331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of Robotic Exoskeleton for Overground Walking in Acute and Chronic Stroke.
    Nolan KJ; Karunakaran KK; Roberts P; Tefertiller C; Walter AM; Zhang J; Leslie D; Jayaraman A; Francisco GE
    Front Neurorobot; 2021; 15():689363. PubMed ID: 34539371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immediate after-effects of robot-assisted gait with pelvic support or pelvic constraint on overground walking in healthy subjects.
    Alingh JF; Weerdesteyn V; Nienhuis B; van Asseldonk EHF; Geurts ACH; Groen BE
    J Neuroeng Rehabil; 2019 Mar; 16(1):40. PubMed ID: 30876445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.
    d'Elia N; Vanetti F; Cempini M; Pasquini G; Parri A; Rabuffetti M; Ferrarin M; Molino Lova R; Vitiello N
    J Neuroeng Rehabil; 2017 Apr; 14(1):29. PubMed ID: 28410594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of added mass placement on metabolic and temporal-spatial characteristics of transfemoral prosthetic gait.
    Ikeda AJ; Hurst EJ; Simon AM; Finucane SB; Hoppe-Ludwig S; Hargrove LJ
    Gait Posture; 2022 Oct; 98():240-247. PubMed ID: 36195049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.