These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34217782)

  • 1. Gut microbiota is involved in the antidepressant-like effect of (S)-norketamine in an inflammation model of depression.
    Wang Y; Jiang R; Wu Z; Zhou L; Xu J; Huang C; Yang L; Zhu B; Yan E; Liu C; Yang C
    Pharmacol Biochem Behav; 2021 Aug; 207():173226. PubMed ID: 34217782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMPA Receptor Activation-Independent Antidepressant Actions of Ketamine Metabolite (S)-Norketamine.
    Yang C; Kobayashi S; Nakao K; Dong C; Han M; Qu Y; Ren Q; Zhang JC; Ma M; Toki H; Yamaguchi JI; Chaki S; Shirayama Y; Nakazawa K; Manabe T; Hashimoto K
    Biol Psychiatry; 2018 Oct; 84(8):591-600. PubMed ID: 29945718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-ketamine.
    Hashimoto K
    Biochem Pharmacol; 2020 Jul; 177():113935. PubMed ID: 32224141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Actinobacteria and Coriobacteriia in the antidepressant effects of ketamine in an inflammation model of depression.
    Huang N; Hua D; Zhan G; Li S; Zhu B; Jiang R; Yang L; Bi J; Xu H; Hashimoto K; Luo A; Yang C
    Pharmacol Biochem Behav; 2019 Jan; 176():93-100. PubMed ID: 30528936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (S)-norketamine and (2S,6S)-hydroxynorketamine exert potent antidepressant-like effects in a chronic corticosterone-induced mouse model of depression.
    Yokoyama R; Higuchi M; Tanabe W; Tsukada S; Naito M; Yamaguchi T; Chen L; Kasai A; Seiriki K; Nakazawa T; Nakagawa S; Hashimoto K; Hashimoto H; Ago Y
    Pharmacol Biochem Behav; 2020 Apr; 191():172876. PubMed ID: 32088360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of (R)-ketamine and lanicemine on depression-like phenotype and abnormal composition of gut microbiota in a social defeat stress model.
    Qu Y; Yang C; Ren Q; Ma M; Dong C; Hashimoto K
    Sci Rep; 2017 Nov; 7(1):15725. PubMed ID: 29147024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites.
    Yang C; Yang J; Luo A; Hashimoto K
    Transl Psychiatry; 2019 Nov; 9(1):280. PubMed ID: 31699965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective.
    Hashimoto K
    Psychiatry Clin Neurosci; 2019 Oct; 73(10):613-627. PubMed ID: 31215725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible role of the gut microbiota-brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model.
    Yang C; Qu Y; Fujita Y; Ren Q; Ma M; Dong C; Hashimoto K
    Transl Psychiatry; 2017 Dec; 7(12):1294. PubMed ID: 29249803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice.
    Yamaguchi JI; Toki H; Qu Y; Yang C; Koike H; Hashimoto K; Mizuno-Yasuhira A; Chaki S
    Neuropsychopharmacology; 2018 Aug; 43(9):1900-1907. PubMed ID: 29802366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of skeletal muscular glycine to rapid antidepressant effects of ketamine in an inflammation-induced mouse model of depression.
    Huang N; Wang Y; Zhan G; Yu F; Li S; Hua D; Jiang R; Li S; Wu Y; Yang L; Zhu B; Hua F; Luo A; Yang C
    Psychopharmacology (Berl); 2019 Dec; 236(12):3513-3523. PubMed ID: 31321459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of deuterium isotope effects in the antidepressant effects of (R)-ketamine in a chronic social defeat stress model.
    Zhang K; Toki H; Fujita Y; Ma M; Chang L; Qu Y; Harada S; Nemoto T; Mizuno-Yasuhira A; Yamaguchi JI; Chaki S; Hashimoto K
    Psychopharmacology (Berl); 2018 Nov; 235(11):3177-3185. PubMed ID: 30215218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antidepressant-like effects of ketamine, norketamine and dehydronorketamine in forced swim test: Role of activity at NMDA receptor.
    Sałat K; Siwek A; Starowicz G; Librowski T; Nowak G; Drabik U; Gajdosz R; Popik P
    Neuropharmacology; 2015 Dec; 99():301-7. PubMed ID: 26240948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine.
    Chang L; Zhang K; Pu Y; Qu Y; Wang SM; Xiong Z; Ren Q; Dong C; Fujita Y; Hashimoto K
    Pharmacol Biochem Behav; 2019 Jun; 181():53-59. PubMed ID: 31034852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antidepressant-like effects of ketamine in a mouse model of serotonergic dysfunction.
    Wilson C; Li S; Hannan AJ; Renoir T
    Neuropharmacology; 2020 May; 168():107998. PubMed ID: 32061666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ketamine interactions with gut-microbiota in rats: relevance to its antidepressant and anti-inflammatory properties.
    Getachew B; Aubee JI; Schottenfeld RS; Csoka AB; Thompson KM; Tizabi Y
    BMC Microbiol; 2018 Dec; 18(1):222. PubMed ID: 30579332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An update on ketamine and its two enantiomers as rapid-acting antidepressants.
    Zhang K; Hashimoto K
    Expert Rev Neurother; 2019 Jan; 19(1):83-92. PubMed ID: 30513009
    [No Abstract]   [Full Text] [Related]  

  • 18. Extrasynaptic CaMKIIα is involved in the antidepressant effects of ketamine by downregulating GluN2B receptors in an LPS-induced depression model.
    Tang XH; Zhang GF; Xu N; Duan GF; Jia M; Liu R; Zhou ZQ; Yang JJ
    J Neuroinflammation; 2020 Jun; 17(1):181. PubMed ID: 32522211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of Antidepressant Effects of (2R,6R)-Hydroxynorketamine in a Rat Learned Helplessness Model: Comparison with (R)-Ketamine.
    Shirayama Y; Hashimoto K
    Int J Neuropsychopharmacol; 2018 Jan; 21(1):84-88. PubMed ID: 29155993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Clickable Analogue of Ketamine Retains NMDA Receptor Activity, Psychoactivity, and Accumulates in Neurons.
    Emnett C; Li H; Jiang X; Benz A; Boggiano J; Conyers S; Wozniak DF; Zorumski CF; Reichert DE; Mennerick S
    Sci Rep; 2016 Dec; 6():38808. PubMed ID: 27982047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.