These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34217922)

  • 1. An OSAHS evaluation method based on multi-features acoustic analysis of snoring sounds.
    Jiang Y; Peng J; Song L
    Sleep Med; 2021 Aug; 84():317-323. PubMed ID: 34217922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of OSAHS patients based on ReliefF-mRMR feature selection.
    Ye Z; Peng J; Zhang X; Song L
    Phys Eng Sci Med; 2024 Mar; 47(1):99-108. PubMed ID: 37878092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic identifying OSAHS patients and simple snorers based on Gaussian mixture models.
    Sun X; Ding L; Song Y; Peng J; Song L; Zhang X
    Physiol Meas; 2023 May; 44(4):. PubMed ID: 37059109
    [No Abstract]   [Full Text] [Related]  

  • 4. AHI estimation of OSAHS patients based on snoring classification and fusion model.
    Song Y; Sun X; Ding L; Peng J; Song L; Zhang X
    Am J Otolaryngol; 2023; 44(5):103964. PubMed ID: 37392727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Acoustic characteristics of snoring sound in patients with obstructive sleep apnea hypopnea syndrome].
    Yang Y; Qin Y; Haung W; Peng H; Xu H
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2012 Apr; 26(8):360-3. PubMed ID: 22730820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-feature snore sound analysis in obstructive sleep apnea-hypopnea syndrome.
    Karunajeewa AS; Abeyratne UR; Hukins C
    Physiol Meas; 2011 Jan; 32(1):83-97. PubMed ID: 21119221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic snoring sounds detection from sleep sounds via multi-features analysis.
    Wang C; Peng J; Song L; Zhang X
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):127-135. PubMed ID: 27909886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatically detecting OSAHS patients based on transfer learning and model fusion.
    Ding L; Peng J; Song L; Zhang X
    Physiol Meas; 2024 May; 45(5):. PubMed ID: 38722551
    [No Abstract]   [Full Text] [Related]  

  • 9. Detection of Snore from OSAHS Patients Based on Deep Learning.
    Shen F; Cheng S; Li Z; Yue K; Li W; Dai L
    J Healthc Eng; 2020; 2020():8864863. PubMed ID: 33456742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apnea and Hypopnea Events Classification Using Amplitude Spectrum Trend Feature of Snores.
    Sun J; Hu X; Zhao Y; Sun S; Chen C; Peng S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():6036-6039. PubMed ID: 30441712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic classification of the obstruction site in obstructive sleep apnea based on snoring sounds.
    Liu Y; Feng Y; Li Y; Xu W; Wang X; Han D
    Am J Otolaryngol; 2022; 43(6):103584. PubMed ID: 36067537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic snoring sounds detection from sleep sounds based on deep learning.
    Jiang Y; Peng J; Zhang X
    Phys Eng Sci Med; 2020 Jun; 43(2):679-689. PubMed ID: 32378124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hidden Markov modelling of intra-snore episode behavior of acoustic characteristics of obstructive sleep apnea patients.
    Herath DL; Abeyratne UR; Hukins C
    Physiol Meas; 2015 Dec; 36(12):2379-404. PubMed ID: 26501965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of the Excitation Location of Snore Sounds in the Upper Airway by Acoustic Multifeature Analysis.
    Qian K; Janott C; Pandit V; Zhang Z; Heiser C; Hohenhorst W; Herzog M; Hemmert W; Schuller B
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1731-1741. PubMed ID: 28113249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic classification of excitation location of snoring sounds.
    Sun J; Hu X; Peng S; Peng CK; Ma Y
    J Clin Sleep Med; 2021 May; 17(5):1031-1038. PubMed ID: 33560203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep apnea severity based on estimated tidal volume and snoring features from tracheal signals.
    Montazeri Ghahjaverestan N; Saha S; Kabir M; Gavrilovic B; Zhu K; Yadollahi A
    J Sleep Res; 2022 Apr; 31(2):e13490. PubMed ID: 34553793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An audio-semantic multimodal model for automatic obstructive sleep Apnea-Hypopnea Syndrome classification via multi-feature analysis of snoring sounds.
    Qiu X; Wang C; Li B; Tong H; Tan X; Yang L; Tao J; Huang J
    Front Neurosci; 2024; 18():1336307. PubMed ID: 38800571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Could formant frequencies of snore signals be an alternative means for the diagnosis of obstructive sleep apnea?
    Ng AK; Koh TS; Baey E; Lee TH; Abeyratne UR; Puvanendran K
    Sleep Med; 2008 Dec; 9(8):894-8. PubMed ID: 17825609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Feature with the Potential to Detect the Severity of Obstructive Sleep Apnoea via Snoring Sound Analysis.
    Hayashi S; Tamaoka M; Tateishi T; Murota Y; Handa I; Miyazaki Y
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32344761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Snoring analysis for the screening of Sleep Apnea Hypopnea Syndrome with a single-channel device developed using polysomnographic and snoring databases.
    Jané R; Fiz JA; Solà-Soler J; Mesquita J; Morera J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8331-3. PubMed ID: 22256278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.