BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34217953)

  • 1. Asymmetric multi-task attention network for prostate bed segmentation in computed tomography images.
    Xu X; Lian C; Wang S; Zhu T; Chen RC; Wang AZ; Royce TJ; Yap PT; Shen D; Lian J
    Med Image Anal; 2021 Aug; 72():102116. PubMed ID: 34217953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetrical Multi-task Attention U-Net for the Segmentation of Prostate Bed in CT Image.
    Xu X; Lian C; Wang S; Wang A; Royce T; Chen R; Lian J; Shen D
    Med Image Comput Comput Assist Interv; 2020 Oct; 12264():470-479. PubMed ID: 34179897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Cross-Task Representation Adaptation for Clinical Targets Co-Segmentation in CT Image-Guided Post-Prostatectomy Radiotherapy.
    Wang F; Xu X; Yang D; Chen RC; Royce TJ; Wang A; Lian J; Lian C
    IEEE Trans Med Imaging; 2023 Apr; 42(4):1046-1055. PubMed ID: 36399586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-channel-and-spatial-attention neural network for automated multi-organ segmentation on head and neck CT images.
    Gou S; Tong N; Qi S; Yang S; Chin R; Sheng K
    Phys Med Biol; 2020 Dec; 65(24):245034. PubMed ID: 32097892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation of organs-at-risks of nasopharynx cancer and lung cancer by cross-layer attention fusion network with TELD-Loss.
    Liu Z; Sun C; Wang H; Li Z; Gao Y; Lei W; Zhang S; Wang G; Zhang S
    Med Phys; 2021 Nov; 48(11):6987-7002. PubMed ID: 34608652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HF-UNet: Learning Hierarchically Inter-Task Relevance in Multi-Task U-Net for Accurate Prostate Segmentation in CT Images.
    He K; Lian C; Zhang B; Zhang X; Cao X; Nie D; Gao Y; Zhang J; Shen D
    IEEE Trans Med Imaging; 2021 Aug; 40(8):2118-2128. PubMed ID: 33848243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning.
    Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y
    Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network.
    Liu Z; Liu X; Xiao B; Wang S; Miao Z; Sun Y; Zhang F
    Phys Med; 2020 Jan; 69():184-191. PubMed ID: 31918371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automated organ segmentation in male pelvic CT images.
    Balagopal A; Kazemifar S; Nguyen D; Lin MH; Hannan R; Owrangi A; Jiang S
    Phys Med Biol; 2018 Dec; 63(24):245015. PubMed ID: 30523973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weaving attention U-net: A novel hybrid CNN and attention-based method for organs-at-risk segmentation in head and neck CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Nov; 48(11):7052-7062. PubMed ID: 34655077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-task edge-recalibrated network for male pelvic multi-organ segmentation on CT images.
    Tong N; Gou S; Chen S; Yao Y; Yang S; Cao M; Kishan A; Sheng K
    Phys Med Biol; 2021 Jan; 66(3):035001. PubMed ID: 33197901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ThoraxNet: a 3D U-Net based two-stage framework for OAR segmentation on thoracic CT images.
    Francis S; Jayaraj PB; Pournami PN; Thomas M; Jose AT; Binu AJ; Puzhakkal N
    Phys Eng Sci Med; 2022 Mar; 45(1):189-203. PubMed ID: 35029804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-View Spatial Aggregation Framework for Joint Localization and Segmentation of Organs at Risk in Head and Neck CT Images.
    Liang S; Thung KH; Nie D; Zhang Y; Shen D
    IEEE Trans Med Imaging; 2020 Sep; 39(9):2794-2805. PubMed ID: 32091997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prostate segmentation by sparse representation based classification.
    Gao Y; Liao S; Shen D
    Med Phys; 2012 Oct; 39(10):6372-87. PubMed ID: 23039673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boundary Coding Representation for Organ Segmentation in Prostate Cancer Radiotherapy.
    Wang S; Liu M; Lian J; Shen D
    IEEE Trans Med Imaging; 2021 Jan; 40(1):310-320. PubMed ID: 32956051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network.
    Dong X; Lei Y; Tian S; Wang T; Patel P; Curran WJ; Jani AB; Liu T; Yang X
    Radiother Oncol; 2019 Dec; 141():192-199. PubMed ID: 31630868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PA-Net: A phase attention network fusing venous and arterial phase features of CT images for liver tumor segmentation.
    Liu Z; Hou J; Pan X; Zhang R; Shi Z
    Comput Methods Programs Biomed; 2024 Feb; 244():107997. PubMed ID: 38176329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.