BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34217953)

  • 21. Cascaded-TOARNet: A cascaded framework based on mixed attention and multiscale information for thoracic OARs segmentation.
    Du W; Guo H; Chen B; Cui M; Zhang T; Sun D; Ma H
    Med Phys; 2024 May; 51(5):3405-3420. PubMed ID: 38063140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Male pelvic CT multi-organ segmentation using synthetic MRI-aided dual pyramid networks.
    Lei Y; Wang T; Tian S; Fu Y; Patel P; Jani AB; Curran WJ; Liu T; Yang X
    Phys Med Biol; 2021 Apr; 66(8):. PubMed ID: 33780918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic Segmentation of Organs-at-Risk in Thoracic Computed Tomography Images Using Ensembled U-Net InceptionV3 Model.
    Ashok M; Gupta A
    J Comput Biol; 2023 Mar; 30(3):346-362. PubMed ID: 36629856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RMAU-Net: Residual Multi-Scale Attention U-Net For liver and tumor segmentation in CT images.
    Jiang L; Ou J; Liu R; Zou Y; Xie T; Xiao H; Bai T
    Comput Biol Med; 2023 May; 158():106838. PubMed ID: 37030263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation.
    Wang S; He K; Nie D; Zhou S; Gao Y; Shen D
    Med Image Anal; 2019 May; 54():168-178. PubMed ID: 30928830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Segmentation of multiple Organs-at-Risk associated with brain tumors based on coarse-to-fine stratified networks.
    Zhao Q; Wang G; Lei W; Fu H; Qu Y; Lu J; Zhang S; Zhang S
    Med Phys; 2023 Jul; 50(7):4430-4442. PubMed ID: 36762594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pelvic Organ Segmentation Using Distinctive Curve Guided Fully Convolutional Networks.
    He K; Cao X; Shi Y; Nie D; Gao Y; Shen D
    IEEE Trans Med Imaging; 2019 Feb; 38(2):585-595. PubMed ID: 30176583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Multi-Attention Guided Multi-Task Learning Network for Automatic Gastric Tumor Segmentation and Lymph Node Classification.
    Zhang Y; Li H; Du J; Qin J; Wang T; Chen Y; Liu B; Gao W; Ma G; Lei B
    IEEE Trans Med Imaging; 2021 Jun; 40(6):1618-1631. PubMed ID: 33646948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A SwinTransformer-Based Segmentation Framework With Self-Supervised Strategy for Post-Operative Prostate Cancer Radiotherapy.
    Miao D; Li J; Dou M; Fu L; Yu Y; Wang X; Wen F; Shen YL
    IEEE J Biomed Health Inform; 2023 Nov; PP():. PubMed ID: 37910404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy.
    Fu Y; Lei Y; Wang T; Tian S; Patel P; Jani AB; Curran WJ; Liu T; Yang X
    Med Phys; 2020 Aug; 47(8):3415-3422. PubMed ID: 32323330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy.
    Balagopal A; Nguyen D; Morgan H; Weng Y; Dohopolski M; Lin MH; Barkousaraie AS; Gonzalez Y; Garant A; Desai N; Hannan R; Jiang S
    Med Image Anal; 2021 Aug; 72():102101. PubMed ID: 34111573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Effective MR-Guided CT Network Training for Segmenting Prostate in CT Images.
    Yang W; Shi Y; Park SH; Yang M; Gao Y; Shen D
    IEEE J Biomed Health Inform; 2020 Aug; 24(8):2278-2291. PubMed ID: 31841426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MetricUNet: Synergistic image- and voxel-level learning for precise prostate segmentation via online sampling.
    He K; Lian C; Adeli E; Huo J; Gao Y; Zhang B; Zhang J; Shen D
    Med Image Anal; 2021 Jul; 71():102039. PubMed ID: 33831595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning image context for segmentation of the prostate in CT-guided radiotherapy.
    Li W; Liao S; Feng Q; Chen W; Shen D
    Phys Med Biol; 2012 Mar; 57(5):1283-308. PubMed ID: 22343071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attention-guided duplex adversarial U-net for pancreatic segmentation from computed tomography images.
    Li M; Lian F; Li Y; Guo S
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13537. PubMed ID: 35199477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SAR-U-Net: Squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography.
    Wang J; Lv P; Wang H; Shi C
    Comput Methods Programs Biomed; 2021 Sep; 208():106268. PubMed ID: 34274611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.