These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 34218176)
1. Highly sensitive self-healable strain biosensors based on robust transparent conductive nanocellulose nanocomposites: Relationship between percolated network and sensing mechanism. Han L; Zhang H; Yu HY; Ouyang Z; Yao J; Krucinska I; Kim D; Tam KC Biosens Bioelectron; 2021 Nov; 191():113467. PubMed ID: 34218176 [TBL] [Abstract][Full Text] [Related]
2. Self-Healable Conductive Nanocellulose Nanocomposites for Biocompatible Electronic Skin Sensor Systems. Han L; Cui S; Yu HY; Song M; Zhang H; Grishkewich N; Huang C; Kim D; Tam KMC ACS Appl Mater Interfaces; 2019 Nov; 11(47):44642-44651. PubMed ID: 31684724 [TBL] [Abstract][Full Text] [Related]
3. Recyclable and mechanically tough nanocellulose reinforced natural rubber composite conductive elastomers for flexible multifunctional sensor. Xu S; Jia Q; Zhang K; Lu C; Wang C; Wang J; Yong Q; Chu F Int J Biol Macromol; 2024 May; 268(Pt 2):131946. PubMed ID: 38692545 [TBL] [Abstract][Full Text] [Related]
4. Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Wang S; Zhang X; Wu X; Lu C Soft Matter; 2016 Jan; 12(3):845-52. PubMed ID: 26542376 [TBL] [Abstract][Full Text] [Related]
5. Induction of polymer-grafted cellulose nanocrystals in hydrogel nanocomposites to increase anti-swelling, mechanical properties and conductive self-recovery for underwater strain sensing. Chen Y; Wu W; Cao X; Li B Int J Biol Macromol; 2024 Aug; 274(Pt 2):133410. PubMed ID: 38925178 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of polyaniline-based composites using cellulose nanocrystals as biological templates. Zhang R; Li Y; Ci Y; Li F; Chen T; Tang Y Int J Biol Macromol; 2024 Jun; 269(Pt 1):132098. PubMed ID: 38710244 [TBL] [Abstract][Full Text] [Related]
7. Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity. Wu X; Lu C; Xu H; Zhang X; Zhou Z ACS Appl Mater Interfaces; 2014 Dec; 6(23):21078-85. PubMed ID: 25384188 [TBL] [Abstract][Full Text] [Related]
8. Tough, Adhesive, Self-Healable, and Transparent Ionically Conductive Zwitterionic Nanocomposite Hydrogels as Skin Strain Sensors. Wang L; Gao G; Zhou Y; Xu T; Chen J; Wang R; Zhang R; Fu J ACS Appl Mater Interfaces; 2019 Jan; 11(3):3506-3515. PubMed ID: 30592203 [TBL] [Abstract][Full Text] [Related]
9. Flexible conductive nanocellulose combined with silicon nanoparticles and polyaniline. Park M; Lee D; Shin S; Kim HJ; Hyun J Carbohydr Polym; 2016 Apr; 140():43-50. PubMed ID: 26876826 [TBL] [Abstract][Full Text] [Related]
10. Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. Hu W; Chen S; Yang Z; Liu L; Wang H J Phys Chem B; 2011 Jul; 115(26):8453-7. PubMed ID: 21671578 [TBL] [Abstract][Full Text] [Related]
11. Preparation and characterization of polylactic acid/polyaniline/nanocrystalline cellulose nanocomposite films. Wang X; Tang Y; Zhu X; Zhou Y; Hong X Int J Biol Macromol; 2020 Mar; 146():1069-1075. PubMed ID: 31739061 [TBL] [Abstract][Full Text] [Related]
12. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. El Miri N; Abdelouahdi K; Barakat A; Zahouily M; Fihri A; Solhy A; El Achaby M Carbohydr Polym; 2015 Sep; 129():156-67. PubMed ID: 26050901 [TBL] [Abstract][Full Text] [Related]
13. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications. Cao J; Zhang X; Wu X; Wang S; Lu C Carbohydr Polym; 2016 Apr; 140():88-95. PubMed ID: 26876831 [TBL] [Abstract][Full Text] [Related]
14. Electroconductive cellulose nanocrystals - Synthesis, properties and applications: A review. Lee Y; Zhang H; Yu HY; Tam KC Carbohydr Polym; 2022 Aug; 289():119419. PubMed ID: 35483837 [TBL] [Abstract][Full Text] [Related]
15. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Zheng C; Lu K; Lu Y; Zhu S; Yue Y; Xu X; Mei C; Xiao H; Wu Q; Han J Carbohydr Polym; 2020 Dec; 250():116905. PubMed ID: 33049881 [TBL] [Abstract][Full Text] [Related]
16. Comparing Percolation and Alignment of Cellulose Nanocrystals for the Reinforcement of Polyurethane Nanocomposites. Redondo A; Mortensen N; Djeghdi K; Jang D; Ortuso RD; Weder C; Korley LTJ; Steiner U; Gunkel I ACS Appl Mater Interfaces; 2022 Feb; 14(5):7270-7282. PubMed ID: 35077647 [TBL] [Abstract][Full Text] [Related]
17. Highly Stretchable, Self-Healable, Ultrasensitive Strain and Proximity Sensors Based on Skin-Inspired Conductive Film for Human Motion Monitoring. Du Y; Yu G; Dai X; Wang X; Yao B; Kong J ACS Appl Mater Interfaces; 2020 Nov; 12(46):51987-51998. PubMed ID: 33142058 [TBL] [Abstract][Full Text] [Related]
18. Chemical cross-linked polyvinyl alcohol/cellulose nanocrystal composite films with high structural stability by spraying Fenton reagent as initiator. Song M; Yu H; Gu J; Ye S; Zhou Y Int J Biol Macromol; 2018 Jul; 113():171-178. PubMed ID: 29471093 [TBL] [Abstract][Full Text] [Related]
20. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. El Achaby M; El Miri N; Aboulkas A; Zahouily M; Bilal E; Barakat A; Solhy A Int J Biol Macromol; 2017 Mar; 96():340-352. PubMed ID: 27988293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]