BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 34218351)

  • 21. The effect of an iron chelating agent on protoporphyrin IX levels and phototoxicity in topical 5-aminolaevulinic acid photodynamic therapy.
    Choudry K; Brooke RC; Farrar W; Rhodes LE
    Br J Dermatol; 2003 Jul; 149(1):124-30. PubMed ID: 12890205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fractionated illumination in oesophageal ALA-PDT: effect on ferrochelatase activity.
    van Den Boogert J; van Staveren HJ; de Bruin RWF ; de Rooij FWM ; Edixhoven-Bosdijk A; Siersema PD; van Hillegersberg R
    J Photochem Photobiol B; 2000 Jun; 56(1):53-60. PubMed ID: 11073316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Silencing Heme Biosynthesis Enzymes on 5-Aminolevulinic Acid-mediated Protoporphyrin IX Fluorescence and Photodynamic Therapy.
    Yang X; Li W; Palasuberniam P; Myers KA; Wang C; Chen B
    Photochem Photobiol; 2015; 91(4):923-30. PubMed ID: 25809721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The inhibition of ferrochelatase enhances 5-aminolevulinic acid-based photodynamic action for prostate cancer.
    Fukuhara H; Inoue K; Kurabayashi A; Furihata M; Fujita H; Utsumi K; Sasaki J; Shuin T
    Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):399-409. PubMed ID: 24284092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation and proteomic changes on the heme pathway following treatment with 5-aminolevulinic acid.
    Sansaloni-Pastor S; Varesio E; Lange N
    J Photochem Photobiol B; 2022 Aug; 233():112484. PubMed ID: 35671620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting ABCG2 transporter to enhance 5-aminolevulinic acid for tumor visualization and photodynamic therapy.
    Chandratre S; Olsen J; Howley R; Chen B
    Biochem Pharmacol; 2023 Nov; 217():115851. PubMed ID: 37858868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization and therapeutic effects of PDT mediated by ALA and MAL in the treatment of cutaneous malignant lesions: A comparative study.
    Lima CA; Goulart VP; Bechara EJ; Correa L; Zezell DM
    J Biophotonics; 2016 Dec; 9(11-12):1355-1361. PubMed ID: 27653310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [5-Aminolevulinic acid esters based photodynamic therapy].
    Zhang S; Zhang Z; Jiang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jun; 19(2):310-4. PubMed ID: 12224308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid.
    Hayashi M; Fukuhara H; Inoue K; Shuin T; Hagiya Y; Nakajima M; Tanaka T; Ogura S
    PLoS One; 2015; 10(3):e0122351. PubMed ID: 25822972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study on the enhancement efficacy of specific and non-specific iron chelators for protoporphyrin IX production and photosensitization in HaCat cells.
    Xia Y; Huang Y; Lin L; Liu X; Jiang S; Xiong L
    J Huazhong Univ Sci Technolog Med Sci; 2009 Dec; 29(6):765-70. PubMed ID: 20037824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the role of iron and one of its chelating agents in the production of protoporphyrin IX generated by 5-aminolevulinic acid and its hexyl ester derivative tested on an epidermal equivalent of human skin.
    Uehlinger P; Ballini JP; van den Bergh H; Wagnières G
    Photochem Photobiol; 2006; 82(4):1069-76. PubMed ID: 17205631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peptide-targeted dendrimeric prodrugs of 5-aminolevulinic acid: A novel approach towards enhanced accumulation of protoporphyrin IX for photodynamic therapy.
    Tewari KM; Dondi R; Yaghini E; Pourzand C; MacRobert AJ; Eggleston IM
    Bioorg Chem; 2021 Apr; 109():104667. PubMed ID: 33611140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship of protoporphyrin IX synthesis to photodynamic effects by 5-aminolaevulinic acid and its esters on various cell lines derived from the skin.
    Lee JB; Choi JY; Chun JS; Yun SJ; Lee SC; Oh J; Park HR
    Br J Dermatol; 2008 Jul; 159(1):61-7. PubMed ID: 18489589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of transferrin receptor (CD71) in photodynamic therapy of activated and malignant lymphocytes using the heme precursor delta-aminolevulinic acid (ALA).
    Rittenhouse-Diakun K; Van Leengoed H; Morgan J; Hryhorenko E; Paszkiewicz G; Whitaker JE; Oseroff AR
    Photochem Photobiol; 1995 May; 61(5):523-8. PubMed ID: 7770514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aminolevulinic Acid-Based Tumor Detection and Therapy: Molecular Mechanisms and Strategies for Enhancement.
    Yang X; Palasuberniam P; Kraus D; Chen B
    Int J Mol Sci; 2015 Oct; 16(10):25865-80. PubMed ID: 26516850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 5-Aminolevulinic acid (ALA)-induced protoporphyrin IX fluorescence and photodynamic effects in the rat bladder: an in vivo study comparing oral and intravesical ALA administration.
    Chang SC; Buonaccorsi G; MacRobert AJ; Bown SG
    Lasers Surg Med; 1997; 20(3):254-64. PubMed ID: 9138254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of light fractionation with a 2-h dark interval on the efficacy of topical hexyl-aminolevulinate photodynamic therapy in normal mouse skin.
    Middelburg TA; de Bruijn HS; van der Ploeg-van den Heuvel A; Neumann HA; Robinson DJ
    Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):703-9. PubMed ID: 24284130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and pharmacological modification of resistance mechanisms to protoporphyrin-mediated photodynamic therapy in human cutaneous squamous cell carcinoma cell lines.
    Schary N; Novak B; Kämper L; Yousf A; Lübbert H
    Photodiagnosis Photodyn Ther; 2022 Sep; 39():103004. PubMed ID: 35811052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accumulation of protoporphyrin IX in medulloblastoma cell lines and sensitivity to subsequent photodynamic treatment.
    Briel-Pump A; Beez T; Ebbert L; Remke M; Weinhold S; Sabel MC; Sorg RV
    J Photochem Photobiol B; 2018 Dec; 189():298-305. PubMed ID: 30445362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methods to Measure the Inhibition of ABCG2 Transporter and Ferrochelatase Activity to Enhance Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Tumor Detection and Resection.
    Mansi M; Howley R; Chen B
    Methods Mol Biol; 2022; 2394():823-835. PubMed ID: 35094360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.