These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34218670)

  • 1. Modified kernel MLAA using autoencoder for PET-enabled dual-energy CT.
    Li S; Wang G
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2204):20200204. PubMed ID: 34218670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PET-enabled dual-energy CT: image reconstruction and a proof-of-concept computer simulation study.
    Wang G
    Phys Med Biol; 2020 Dec; 65(24):245028. PubMed ID: 33120376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural MLAA for PET-enabled Dual-Energy CT Imaging.
    Li S; Wang G
    Proc SPIE Int Soc Opt Eng; 2021 Feb; 11595():. PubMed ID: 36883104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution reconstruction of
    Zhu Y; Spencer BA; Xie Z; Leung EK; Bayerlein R; Omidvari N; Cherry SR; Qi J; Badawi RD; Wang G
    Proc SPIE Int Soc Opt Eng; 2024 Feb; 12463():. PubMed ID: 38500666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Subject Deep-Learning Image Reconstruction With a Neural Optimization Transfer Algorithm for PET-Enabled Dual-Energy CT Imaging.
    Li S; Zhu Y; Spencer BA; Wang G
    IEEE Trans Image Process; 2024; 33():4075-4089. PubMed ID: 38941203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of PET Attenuation Map for Whole-Body Time-of-Flight
    Hwang D; Kang SK; Kim KY; Seo S; Paeng JC; Lee DS; Lee JS
    J Nucl Med; 2019 Aug; 60(8):1183-1189. PubMed ID: 30683763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Subject Deep-Learning Image Reconstruction with a Neural Optimization Transfer Algorithm for PET-enabled Dual-Energy CT Imaging.
    Li S; Zhu Y; Spencer BA; Wang G
    ArXiv; 2024 Jun; ():. PubMed ID: 37873021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of PET-enabled dual-energy CT imaging: First physical phantom and initial patient results.
    Zhu Y; Li S; Xie Z; Leung EK; Bayerlein R; Omidvari N; Abdelhafez YG; Cherry SR; Qi J; Badawi RD; Spencer BA; Wang G
    ArXiv; 2024 Nov; ():. PubMed ID: 38351944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the Accuracy of Simultaneously Reconstructed Activity and Attenuation Maps Using Deep Learning.
    Hwang D; Kim KY; Kang SK; Seo S; Paeng JC; Lee DS; Lee JS
    J Nucl Med; 2018 Oct; 59(10):1624-1629. PubMed ID: 29449446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous reconstruction of attenuation and activity in cardiac PET can remove CT misalignment artifacts.
    Presotto L; Busnardo E; Perani D; Gianolli L; Gilardi MC; Bettinardi V
    J Nucl Cardiol; 2016 Oct; 23(5):1086-1097. PubMed ID: 26275447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MR-guided joint reconstruction of activity and attenuation in brain PET-MR.
    Mehranian A; Zaidi H; Reader AJ
    Neuroimage; 2017 Nov; 162():276-288. PubMed ID: 28918316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based attenuation map generation with simultaneously reconstructed PET activity and attenuation and low-dose application.
    Shi L; Zhang J; Toyonaga T; Shao D; Onofrey JA; Lu Y
    Phys Med Biol; 2023 Jan; 68(3):. PubMed ID: 36584395
    [No Abstract]   [Full Text] [Related]  

  • 13. Anatomically aided PET image reconstruction using deep neural networks.
    Xie Z; Li T; Zhang X; Qi W; Asma E; Qi J
    Med Phys; 2021 Sep; 48(9):5244-5258. PubMed ID: 34129690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate PET/MR quantification using time of flight MLAA image reconstruction.
    Boellaard R; Hofman MB; Hoekstra OS; Lammertsma AA
    Mol Imaging Biol; 2014 Aug; 16(4):469-77. PubMed ID: 24430291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Kernel Representation for Image Reconstruction in PET.
    Li S; Wang G
    IEEE Trans Med Imaging; 2022 Nov; 41(11):3029-3038. PubMed ID: 35584077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.
    Mehranian A; Arabi H; Zaidi H
    Neuroimage; 2016 Apr; 130():123-133. PubMed ID: 26853602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic multi-spectral CT reconstruction with directional total variation.
    Cueva E; Meaney A; Siltanen S; Ehrhardt MJ
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2204):20200198. PubMed ID: 34218669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved iterative neural network for high-quality image-domain material decomposition in dual-energy CT.
    Li Z; Long Y; Chun IY
    Med Phys; 2023 Apr; 50(4):2195-2211. PubMed ID: 35735056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.