These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 34218785)

  • 41. Glutamatergic drugs for schizophrenia treatment.
    Gibert-Rahola J; Villena-Rodriguez A
    Actas Esp Psiquiatr; 2014; 42(5):234-41. PubMed ID: 25179095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development.
    Krystal JH; D'Souza DC; Mathalon D; Perry E; Belger A; Hoffman R
    Psychopharmacology (Berl); 2003 Sep; 169(3-4):215-33. PubMed ID: 12955285
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism.
    Neill JC; Barnes S; Cook S; Grayson B; Idris NF; McLean SL; Snigdha S; Rajagopal L; Harte MK
    Pharmacol Ther; 2010 Dec; 128(3):419-32. PubMed ID: 20705091
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Serotonin-glutamate and serotonin-dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins.
    de Bartolomeis A; Buonaguro EF; Iasevoli F
    Psychopharmacology (Berl); 2013 Jan; 225(1):1-19. PubMed ID: 23179966
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Glutamate and schizophrenia: beyond the dopamine hypothesis.
    Coyle JT
    Cell Mol Neurobiol; 2006; 26(4-6):365-84. PubMed ID: 16773445
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Progress towards validating the NMDA receptor hypofunction hypothesis of schizophrenia.
    Lindsley CW; Shipe WD; Wolkenberg SE; Theberge CR; Williams DL; Sur C; Kinney GG
    Curr Top Med Chem; 2006; 6(8):771-85. PubMed ID: 16719816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Allosteric modulators for the treatment of schizophrenia: targeting glutamatergic networks.
    Menniti FS; Lindsley CW; Conn PJ; Pandit J; Zagouras P; Volkmann RA
    Curr Top Med Chem; 2013; 13(1):26-54. PubMed ID: 23409764
    [TBL] [Abstract][Full Text] [Related]  

  • 48. N-Methyl-D-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives.
    Millan MJ
    Psychopharmacology (Berl); 2005 Apr; 179(1):30-53. PubMed ID: 15761697
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antischizophrenic activity independent of dopamine D2 blockade.
    Kalkman HO
    Expert Opin Ther Targets; 2002 Oct; 6(5):571-82. PubMed ID: 12387681
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antipsychotic treatment modulates glutamate transport and NMDA receptor expression.
    Zink M; Englisch S; Schmitt A
    Eur Arch Psychiatry Clin Neurosci; 2014 Nov; 264 Suppl 1():S67-82. PubMed ID: 25214389
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Significance of dysfunctional glutamatergic transmission for the development of psychotic symptoms.
    Pietraszek M
    Pol J Pharmacol; 2003; 55(2):133-54. PubMed ID: 12926541
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents.
    Miyamoto S; Miyake N; Jarskog LF; Fleischhacker WW; Lieberman JA
    Mol Psychiatry; 2012 Dec; 17(12):1206-27. PubMed ID: 22584864
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct and indirect modulation of the N-methyl D-aspartate receptor.
    Marino MJ; Conn PJ
    Curr Drug Targets CNS Neurol Disord; 2002 Feb; 1(1):1-16. PubMed ID: 12769631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cannabidiol modulation of hippocampal glutamate in early psychosis.
    O'Neill A; Annibale L; Blest-Hopley G; Wilson R; Giampietro V; Bhattacharyya S
    J Psychopharmacol; 2021 Jul; 35(7):814-822. PubMed ID: 33860709
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia.
    Javitt DC; Zukin SR; Heresco-Levy U; Umbricht D
    Schizophr Bull; 2012 Sep; 38(5):958-66. PubMed ID: 22987851
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glutamatergic dysbalance and oxidative stress in in vivo and in vitro models of psychosis based on chronic NMDA receptor antagonism.
    Genius J; Geiger J; Dölzer AL; Benninghoff J; Giegling I; Hartmann AM; Möller HJ; Rujescu D
    PLoS One; 2013; 8(7):e59395. PubMed ID: 23869202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biological perspectives: the role of glutamate in schizophrenia and its treatment.
    Steele D; Moore RL; Swan NA; Grant JS; Keltner NL
    Perspect Psychiatr Care; 2012 Jul; 48(3):125-8. PubMed ID: 22724397
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Novel therapies for schizophrenia: understanding the glutamatergic synapse and potential targets for altering N-methyl-D-aspartate neurotransmission.
    Hui C; Wardwell B; Tsai GE
    Recent Pat CNS Drug Discov; 2009 Nov; 4(3):220-38. PubMed ID: 19891601
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-Target Approach for Drug Discovery against Schizophrenia.
    Kondej M; Stępnicki P; Kaczor AA
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30309037
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent advances in the discovery of D-amino acid oxidase inhibitors and their therapeutic utility in schizophrenia.
    Ferraris DV; Tsukamoto T
    Curr Pharm Des; 2011; 17(2):103-11. PubMed ID: 21361869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.