These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 3421894)
1. Study of the mechanism by which the Na+-Pi co-transporter of mouse kidney proximal-tubule cells adjusts to phosphate depletion. Jahan M; Butterworth PJ Biochem J; 1988 May; 252(1):105-9. PubMed ID: 3421894 [TBL] [Abstract][Full Text] [Related]
2. Relative contributions of Na+-dependent phosphate co-transporters to phosphate transport in mouse kidney: RNase H-mediated hybrid depletion analysis. Miyamoto K; Segawa H; Morita K; Nii T; Tatsumi S; Taketani Y; Takeda E Biochem J; 1997 Nov; 327 ( Pt 3)(Pt 3):735-9. PubMed ID: 9581550 [TBL] [Abstract][Full Text] [Related]
3. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles. Park K; Kim KR; Kim JY; Park YS Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797 [TBL] [Abstract][Full Text] [Related]
4. Properties of electrogenic Pi transport by a human renal brush border Na+/Pi transporter. Busch AE; Wagner CA; Schuster A; Waldegger S; Biber J; Murer H; Lang F J Am Soc Nephrol; 1995 Dec; 6(6):1547-51. PubMed ID: 8749679 [TBL] [Abstract][Full Text] [Related]
5. Maturational effects of glucocorticoids on neonatal brush-border membrane phosphate transport. Arar M; Levi M; Baum M Pediatr Res; 1994 Apr; 35(4 Pt 1):474-8. PubMed ID: 8047384 [TBL] [Abstract][Full Text] [Related]
6. Glycosphingolipids modulate renal phosphate transport in potassium deficiency. Zajicek HK; Wang H; Puttaparthi K; Halaihel N; Markovich D; Shayman J; Béliveau R; Wilson P; Rogers T; Levi M Kidney Int; 2001 Aug; 60(2):694-704. PubMed ID: 11473652 [TBL] [Abstract][Full Text] [Related]
7. Cellular/molecular control of renal Na/Pi-cotransport. Murer H; Forster I; Hilfiker H; Pfister M; Kaissling B; Lötscher M; Biber J Kidney Int Suppl; 1998 Apr; 65():S2-10. PubMed ID: 9551425 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneity of Pi transport by BBM from superficial and juxtamedullary cortex of rat. Levi M Am J Physiol; 1990 Jun; 258(6 Pt 2):F1616-24. PubMed ID: 2141765 [TBL] [Abstract][Full Text] [Related]
15. Na+ -phosphate cotransport in mouse distal convoluted tubule cells: evidence for Glvr-1 and Ram-1 gene expression. Tenenhouse HS; Gauthier C; Martel J; Gesek FA; Coutermarsh BA; Friedman PA J Bone Miner Res; 1998 Apr; 13(4):590-7. PubMed ID: 9556059 [TBL] [Abstract][Full Text] [Related]
16. Sodium-dependent phosphate transport in a rat kidney endosomal fraction. Abraham MI; Burckhardt G; Kempson SA Kidney Int; 1992 Nov; 42(5):1070-8. PubMed ID: 1453594 [TBL] [Abstract][Full Text] [Related]
17. Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Segawa H; Yamanaka S; Ito M; Kuwahata M; Shono M; Yamamoto T; Miyamoto K Am J Physiol Renal Physiol; 2005 Mar; 288(3):F587-96. PubMed ID: 15561978 [TBL] [Abstract][Full Text] [Related]
19. Electrophysiological analysis of Na+/Pi cotransport mediated by a transporter cloned from rat kidney and expressed in Xenopus oocytes. Busch A; Waldegger S; Herzer T; Biber J; Markovich D; Hayes G; Murer H; Lang F Proc Natl Acad Sci U S A; 1994 Aug; 91(17):8205-8. PubMed ID: 8058781 [TBL] [Abstract][Full Text] [Related]
20. Adaptation to phosphate depletion in opossum kidney cells. Saxena S; Dansby L; Allon M Biochem Biophys Res Commun; 1995 Nov; 216(1):141-7. PubMed ID: 7488080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]