BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34219136)

  • 1. Active microrheology using pulsed optical tweezers to probe viscoelasticity of lamin A.
    Mukherjee C; Kundu A; Dey R; Banerjee A; Sengupta K
    Soft Matter; 2021 Jul; 17(28):6787-6796. PubMed ID: 34219136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic behavior of human lamin A proteins in the context of dilated cardiomyopathy.
    Banerjee A; Rathee V; Krishnaswamy R; Bhattacharjee P; Ray P; Sood AK; Sengupta K
    PLoS One; 2013; 8(12):e83410. PubMed ID: 24386194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural alterations of Lamin A protein in dilated cardiomyopathy.
    Bhattacharjee P; Banerjee A; Banerjee A; Dasgupta D; Sengupta K
    Biochemistry; 2013 Jun; 52(24):4229-41. PubMed ID: 23701190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the human lamin A coil 2B dimer: implications for the head-to-tail association of nuclear lamins.
    Strelkov SV; Schumacher J; Burkhard P; Aebi U; Herrmann H
    J Mol Biol; 2004 Oct; 343(4):1067-80. PubMed ID: 15476822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of 1B and 2B domains in modulating elastic properties of lamin A.
    Bera M; Ainavarapu SR; Sengupta K
    Sci Rep; 2016 Jun; 6():27879. PubMed ID: 27301336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of Coiled-Coil Structures in Lamin A/C Is Required for the Elongation of the Filament.
    Ahn J; Jeong S; Kang SM; Jo I; Park BJ; Ha NC
    Cells; 2020 Dec; 10(1):. PubMed ID: 33396475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease.
    Fatkin D; MacRae C; Sasaki T; Wolff MR; Porcu M; Frenneaux M; Atherton J; Vidaillet HJ; Spudich S; De Girolami U; Seidman JG; Seidman C; Muntoni F; Müehle G; Johnson W; McDonough B
    N Engl J Med; 1999 Dec; 341(23):1715-24. PubMed ID: 10580070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein structural and mechanistic basis of progeroid laminopathies.
    Marcelot A; Worman HJ; Zinn-Justin S
    FEBS J; 2021 May; 288(9):2757-2772. PubMed ID: 32799420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of unfolding mechanism of human lamin A Ig fold by single-molecule force spectroscopy-implications in EDMD.
    Bera M; Kotamarthi HC; Dutta S; Ray A; Ghosh S; Bhattacharyya D; Ainavarapu SR; Sengupta K
    Biochemistry; 2014 Nov; 53(46):7247-58. PubMed ID: 25343322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly and architecture of invertebrate cytoplasmic intermediate filaments reconcile features of vertebrate cytoplasmic and nuclear lamin-type intermediate filaments.
    Geisler N; Schünemann J; Weber K; Häner M; Aebi U
    J Mol Biol; 1998 Sep; 282(3):601-17. PubMed ID: 9737925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein Kinase C Alpha Cellular Distribution, Activity, and Proximity with Lamin A/C in Striated Muscle Laminopathies.
    Nicolas HA; Bertrand AT; Labib S; Mohamed-Uvaize M; Bolongo PM; Wu WY; Bilińska ZT; Bonne G; Akimenko MA; Tesson F
    Cells; 2020 Oct; 9(11):. PubMed ID: 33142761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphibian oocyte nuclei expressing lamin A with the progeria mutation E145K exhibit an increased elastic modulus.
    Kaufmann A; Heinemann F; Radmacher M; Stick R
    Nucleus; 2011; 2(4):310-9. PubMed ID: 21941106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear lamins, diseases and aging.
    Mattout A; Dechat T; Adam SA; Goldman RD; Gruenbaum Y
    Curr Opin Cell Biol; 2006 Jun; 18(3):335-41. PubMed ID: 16632339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear lamina.
    Sapra KT; Qin Z; Dubrovsky-Gaupp A; Aebi U; Müller DJ; Buehler MJ; Medalia O
    Nat Commun; 2020 Dec; 11(1):6205. PubMed ID: 33277502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disease-associated mutations in the coil 2B domain of human lamin A/C affect structural properties that mediate dimerization and intermediate filament formation.
    Gangemi F; Degano M
    J Struct Biol; 2013 Jan; 181(1):17-28. PubMed ID: 23142632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and function of nuclear lamins: implications for disease.
    Moir RD; Spann TP
    Cell Mol Life Sci; 2001 Nov; 58(12-13):1748-57. PubMed ID: 11766876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laminopathy-inducing lamin A mutants can induce redistribution of lamin binding proteins into nuclear aggregates.
    Hübner S; Eam JE; Hübner A; Jans DA
    Exp Cell Res; 2006 Jan; 312(2):171-83. PubMed ID: 16289535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle dystrophy single point mutation in the 2B segment of lamin A does not affect the mechanical properties at the dimer level.
    Zhang H; Ackbarow T; Buehler MJ
    J Biomech; 2008; 41(6):1295-301. PubMed ID: 18308323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear Lamins: Thin Filaments with Major Functions.
    de Leeuw R; Gruenbaum Y; Medalia O
    Trends Cell Biol; 2018 Jan; 28(1):34-45. PubMed ID: 28893461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myopathic lamin mutations cause reductive stress and activate the nrf2/keap-1 pathway.
    Dialynas G; Shrestha OK; Ponce JM; Zwerger M; Thiemann DA; Young GH; Moore SA; Yu L; Lammerding J; Wallrath LL
    PLoS Genet; 2015 May; 11(5):e1005231. PubMed ID: 25996830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.