BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 3421915)

  • 1. Hydroxyl-radical-induced iron-catalysed degradation of 2-deoxyribose. Quantitative determination of malondialdehyde.
    Cheeseman KH; Beavis A; Esterbauer H
    Biochem J; 1988 Jun; 252(3):649-53. PubMed ID: 3421915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relative efficiency of radicals in radiation damage to deoxyribose.
    Rao VS; Goldstein S; Czapski G
    Free Radic Res Commun; 1991; 12-13 Pt 1():67-73. PubMed ID: 1649105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of lysozyme inactivation and degradation by iron.
    Sellak H; Franzini E; Hakim J; Pasquier C
    Arch Biochem Biophys; 1992 Nov; 299(1):172-8. PubMed ID: 1332614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reevaluation of the 2-deoxyribose assay for determination of free radical formation.
    Genaro-Mattos TC; Dalvi LT; Oliveira RG; Ginani JS; Hermes-Lima M
    Biochim Biophys Acta; 2009 Dec; 1790(12):1636-42. PubMed ID: 19747523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Streptonigrin-induced deoxyribose degradation: inhibition by superoxide dismutase, hydroxyl radical scavengers and iron chelators.
    Gutteridge JM
    Biochem Pharmacol; 1984 Oct; 33(19):3059-62. PubMed ID: 6091667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers.
    Moorhouse CP; Halliwell B; Grootveld M; Gutteridge JM
    Biochim Biophys Acta; 1985 Dec; 843(3):261-8. PubMed ID: 2998477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitomycin C-induced deoxyribose degradation inhibited by superoxide dismutase. A reaction involving iron, hydroxyl and semiquinone radicals.
    Gutteridge JM; Quinlan GJ; Wilkins S
    FEBS Lett; 1984 Feb; 167(1):37-41. PubMed ID: 6321237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA.
    Gutteridge JM
    Biochem J; 1987 May; 243(3):709-14. PubMed ID: 3117032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals.
    Halliwell B; Gutteridge JM; Aruoma OI
    Anal Biochem; 1987 Aug; 165(1):215-9. PubMed ID: 3120621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deoxyribose degradation catalyzed by Fe(III)-EDTA: kinetic aspects and potential usefulness for submicromolar iron measurements.
    Hermes-Lima M; Wang EM; Schulman HM; Storey KB; Ponka P
    Mol Cell Biochem; 1994 Aug; 137(1):65-73. PubMed ID: 7845380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vanadyl causes hydroxyl radical mediated degradation of deoxyribose.
    Liochev S; Ivancheva E
    Free Radic Res Commun; 1991; 14(5-6):335-42. PubMed ID: 1663905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts.
    Gutteridge JM
    FEBS Lett; 1982 Dec; 150(2):454-8. PubMed ID: 6297981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reactivity of the SH group of bovine serum albumin with free radicals.
    Di Simplicio P; Cheeseman KH; Slater TF
    Free Radic Res Commun; 1991; 14(4):253-62. PubMed ID: 1651886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative sugar degradation by (OH). produced by the iron-driven Fenton reaction and gamma radiolysis.
    Franzini E; Sellak H; Hakim J; Pasquier C
    Arch Biochem Biophys; 1994 Mar; 309(2):261-5. PubMed ID: 8135536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deoxyribose breakdown by the adriamycin semiquinone and H2O2: evidence for hydroxyl radical participation.
    Bates DA; Winterbourn CC
    FEBS Lett; 1982 Aug; 145(1):137-42. PubMed ID: 6897044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction of dipyridamole with the hydroxyl radical.
    Iuliano L; Praticò D; Ghiselli A; Bonavita MS; Violi F
    Lipids; 1992 May; 27(5):349-53. PubMed ID: 1328796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of the competitive degradation of deoxyribose and other biomolecules by hydroxyl radicals produced by the Fenton reaction.
    Zaho MJ; Jung L; Tanielian C; Mechin R
    Free Radic Res; 1994 Jun; 20(6):345-63. PubMed ID: 8081451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate.
    Gutteridge JM
    Biochem J; 1984 Dec; 224(3):761-7. PubMed ID: 6098266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyl radical formation from the auto-reduction of a ferric citrate complex.
    Gutteridge JM
    Free Radic Biol Med; 1991; 11(4):401-6. PubMed ID: 1665838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.