BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 34219311)

  • 1. A systematic evaluation of source reconstruction of resting MEG of the human brain with a new high-resolution atlas: Performance, precision, and parcellation.
    Tait L; Özkan A; Szul MJ; Zhang J
    Hum Brain Mapp; 2021 Oct; 42(14):4685-4707. PubMed ID: 34219311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive cortical parcellations for source reconstructed EEG/MEG connectomes.
    Farahibozorg SR; Henson RN; Hauk O
    Neuroimage; 2018 Apr; 169():23-45. PubMed ID: 28893608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducibility of graph measures derived from resting-state MEG functional connectivity metrics in sensor and source spaces.
    Pourmotabbed H; de Jongh Curry AL; Clarke DF; Tyler-Kabara EC; Babajani-Feremi A
    Hum Brain Mapp; 2022 Mar; 43(4):1342-1357. PubMed ID: 35019189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of MEG source reconstruction method on source-space connectivity estimation: A comparison between minimum-norm solution and beamforming.
    Hincapié AS; Kujala J; Mattout J; Pascarella A; Daligault S; Delpuech C; Mery D; Cosmelli D; Jerbi K
    Neuroimage; 2017 Aug; 156():29-42. PubMed ID: 28479475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images.
    Huang MX; Huang CW; Robb A; Angeles A; Nichols SL; Baker DG; Song T; Harrington DL; Theilmann RJ; Srinivasan R; Heister D; Diwakar M; Canive JM; Edgar JC; Chen YH; Ji Z; Shen M; El-Gabalawy F; Levy M; McLay R; Webb-Murphy J; Liu TT; Drake A; Lee RR
    Neuroimage; 2014 Jan; 84():585-604. PubMed ID: 24055704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimising experimental design for MEG resting state functional connectivity measurement.
    Liuzzi L; Gascoyne LE; Tewarie PK; Barratt EL; Boto E; Brookes MJ
    Neuroimage; 2017 Jul; 155():565-576. PubMed ID: 27903441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple constrained minimum variance beamformer (MCMV) performance in connectivity analyses.
    Nunes AS; Moiseev A; Kozhemiako N; Cheung T; Ribary U; Doesburg SM
    Neuroimage; 2020 Mar; 208():116386. PubMed ID: 31786165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring MEG brain fingerprints: Evaluation, pitfalls, and interpretations.
    Sareen E; Zahar S; Ville DV; Gupta A; Griffa A; Amico E
    Neuroimage; 2021 Oct; 240():118331. PubMed ID: 34237444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified covariance beamformer for solving MEG inverse problem in the environment with correlated sources.
    Kuznetsova A; Nurislamova Y; Ossadtchi A
    Neuroimage; 2021 Mar; 228():117677. PubMed ID: 33385549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the performance of MEG source reconstruction using resting state data.
    Little S; Bonaiuto J; Meyer SS; Lopez J; Bestmann S; Barnes G
    Neuroimage; 2018 Nov; 181():453-460. PubMed ID: 30012537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How reliable are MEG resting-state connectivity metrics?
    Colclough GL; Woolrich MW; Tewarie PK; Brookes MJ; Quinn AJ; Smith SM
    Neuroimage; 2016 Sep; 138():284-293. PubMed ID: 27262239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph theoretical analysis of resting-state MEG data: Identifying interhemispheric connectivity and the default mode.
    Maldjian JA; Davenport EM; Whitlow CT
    Neuroimage; 2014 Aug; 96():88-94. PubMed ID: 24699016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity.
    Messaritaki E; Koelewijn L; Dima DC; Williams GM; Perry G; Singh KD
    Neuroimage; 2017 Oct; 159():302-324. PubMed ID: 28735011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse weightings for collapsing inverse solutions to cortical parcellations optimize M/EEG source reconstruction accuracy.
    Korhonen O; Palva S; Palva JM
    J Neurosci Methods; 2014 Apr; 226():147-160. PubMed ID: 24509129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of Magnetoencephalography and High-Density Electroencephalography Resting-State Functional Connectivity Metrics.
    Marquetand J; Vannoni S; Carboni M; Li Hegner Y; Stier C; Braun C; Focke NK
    Brain Connect; 2019 Sep; 9(7):539-553. PubMed ID: 31115272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking dynamic brain networks using high temporal resolution MEG measures of functional connectivity.
    Tewarie P; Liuzzi L; O'Neill GC; Quinn AJ; Griffa A; Woolrich MW; Stam CJ; Hillebrand A; Brookes MJ
    Neuroimage; 2019 Oct; 200():38-50. PubMed ID: 31207339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG.
    Hedrich T; Pellegrino G; Kobayashi E; Lina JM; Grova C
    Neuroimage; 2017 Aug; 157():531-544. PubMed ID: 28619655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuro-current response functions: A unified approach to MEG source analysis under the continuous stimuli paradigm.
    Das P; Brodbeck C; Simon JZ; Babadi B
    Neuroimage; 2020 May; 211():116528. PubMed ID: 31945510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.