These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 34219651)
1. GluA4 facilitates cerebellar expansion coding and enables associative memory formation. Kita K; Albergaria C; Machado AS; Carey MR; Müller M; Delvendahl I Elife; 2021 Jul; 10():. PubMed ID: 34219651 [TBL] [Abstract][Full Text] [Related]
2. Subunit-specific synaptic delivery of AMPA receptors by auxiliary chaperone proteins TARPγ8 and GSG1L in classical conditioning. Keifer J; Tiwari NK; Buse L; Zheng Z Neurosci Lett; 2017 Apr; 645():53-59. PubMed ID: 28219790 [TBL] [Abstract][Full Text] [Related]
3. Sequential delivery of synaptic GluA1- and GluA4-containing AMPA receptors (AMPARs) by SAP97 anchored protein complexes in classical conditioning. Zheng Z; Keifer J J Biol Chem; 2014 Apr; 289(15):10540-10550. PubMed ID: 24567325 [TBL] [Abstract][Full Text] [Related]
4. Two-stage AMPA receptor trafficking in classical conditioning and selective role for glutamate receptor subunit 4 (tGluA4) flop splice variant. Zheng Z; Sabirzhanov B; Keifer J J Neurophysiol; 2012 Jul; 108(1):101-11. PubMed ID: 22490558 [TBL] [Abstract][Full Text] [Related]
5. TARPs gamma-2 and gamma-7 are essential for AMPA receptor expression in the cerebellum. Yamazaki M; Fukaya M; Hashimoto K; Yamasaki M; Tsujita M; Itakura M; Abe M; Natsume R; Takahashi M; Kano M; Sakimura K; Watanabe M Eur J Neurosci; 2010 Jun; 31(12):2204-20. PubMed ID: 20529126 [TBL] [Abstract][Full Text] [Related]
6. Selective changes in AMPA receptors in rabbit cerebellum following classical conditioning of the eyelid-nictitating membrane response. Hauge SA; Tracy JA; Baudry M; Thompson RF Brain Res; 1998 Aug; 803(1-2):9-18. PubMed ID: 9729243 [TBL] [Abstract][Full Text] [Related]
7. GluA4 is indispensable for driving fast neurotransmission across a high-fidelity central synapse. Yang YM; Aitoubah J; Lauer AM; Nuriya M; Takamiya K; Jia Z; May BJ; Huganir RL; Wang LY J Physiol; 2011 Sep; 589(17):4209-27. PubMed ID: 21690196 [TBL] [Abstract][Full Text] [Related]
8. Hippocampal GluA2 and GluA4 protein but not corresponding mRNA and promoter methylation levels are modulated at retrieval in spatial learning of the rat. Rössner B; Klingler M; Bulat T; Sase A; Zeilinger A; Spitzwieser M; Aradska J; Cichna-Markl M; Lubec G Amino Acids; 2017 Jan; 49(1):117-127. PubMed ID: 27714514 [TBL] [Abstract][Full Text] [Related]
9. Sexually dimorphic long-term effects of an early life experience on AMPA receptor subunit expression in rat brain. Katsouli S; Stamatakis A; Giompres P; Kouvelas ED; Stylianopoulou F; Mitsacos A Neuroscience; 2014 Jan; 257():49-64. PubMed ID: 24211798 [TBL] [Abstract][Full Text] [Related]
10. The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells. Rubio ME; Matsui K; Fukazawa Y; Kamasawa N; Harada H; Itakura M; Molnár E; Abe M; Sakimura K; Shigemoto R Brain Struct Funct; 2017 Nov; 222(8):3375-3393. PubMed ID: 28397107 [TBL] [Abstract][Full Text] [Related]
11. Motor Learning Requires Purkinje Cell Synaptic Potentiation through Activation of AMPA-Receptor Subunit GluA3. Gutierrez-Castellanos N; Da Silva-Matos CM; Zhou K; Canto CB; Renner MC; Koene LMC; Ozyildirim O; Sprengel R; Kessels HW; De Zeeuw CI Neuron; 2017 Jan; 93(2):409-424. PubMed ID: 28103481 [TBL] [Abstract][Full Text] [Related]
12. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity. Antonietti A; Casellato C; D'Angelo E; Pedrocchi A IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482 [TBL] [Abstract][Full Text] [Related]
13. Neural substrates of eyeblink conditioning: acquisition and retention. Christian KM; Thompson RF Learn Mem; 2003; 10(6):427-55. PubMed ID: 14657256 [TBL] [Abstract][Full Text] [Related]
14. Bergmann glial AMPA receptors are required for fine motor coordination. Saab AS; Neumeyer A; Jahn HM; Cupido A; Šimek AA; Boele HJ; Scheller A; Le Meur K; Götz M; Monyer H; Sprengel R; Rubio ME; Deitmer JW; De Zeeuw CI; Kirchhoff F Science; 2012 Aug; 337(6095):749-53. PubMed ID: 22767895 [TBL] [Abstract][Full Text] [Related]
15. Synaptic Mechanisms of Delay Eyeblink Classical Conditioning: AMPAR Trafficking and Gene Regulation in an In Vitro Model. Keifer J Mol Neurobiol; 2023 Dec; 60(12):7088-7103. PubMed ID: 37531025 [TBL] [Abstract][Full Text] [Related]
17. Elimination of redundant synaptic inputs in the absence of synaptic strengthening. Wang H; Liu H; Zhang ZW J Neurosci; 2011 Nov; 31(46):16675-84. PubMed ID: 22090494 [TBL] [Abstract][Full Text] [Related]
18. pT305-CaMKII stabilizes a learning-induced increase in AMPA receptors for ongoing memory consolidation after classical conditioning. Naskar S; Wan H; Kemenes G Nat Commun; 2014 May; 5():3967. PubMed ID: 24875483 [TBL] [Abstract][Full Text] [Related]
19. [Associative learning: classical eyeblink conditioning with special reference to the role of the higher nervous system]. Kawahara S; Kirino Y Tanpakushitsu Kakusan Koso; 2004 Feb; 49(3 Suppl):493-8. PubMed ID: 14976778 [No Abstract] [Full Text] [Related]
20. Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer. Hashimoto K; Fukaya M; Qiao X; Sakimura K; Watanabe M; Kano M J Neurosci; 1999 Jul; 19(14):6027-36. PubMed ID: 10407040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]