These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34219676)

  • 21. Wearable Lower-Limb Exoskeleton for Children With Cerebral Palsy: A Systematic Review of Mechanical Design, Actuation Type, Control Strategy, and Clinical Evaluation.
    Sarajchi M; Al-Hares MK; Sirlantzis K
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2695-2720. PubMed ID: 34910636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review.
    Lefmann S; Russo R; Hillier S
    J Neuroeng Rehabil; 2017 Jan; 14(1):1. PubMed ID: 28057016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the effectiveness of robotic gait training and gait-focused physical therapy programs for children and youth with cerebral palsy: a mixed methods RCT.
    Wiart L; Rosychuk RJ; Wright FV
    BMC Neurol; 2016 Jun; 16():86. PubMed ID: 27255908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: A systematic review.
    Hayes SC; James Wilcox CR; Forbes White HS; Vanicek N
    J Spinal Cord Med; 2018 Sep; 41(5):529-543. PubMed ID: 29400988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Benefits of robotics in gait rehabilitation in cerebral palsy: A systematic review].
    Lobato Garcia L; González González Y; Da Cuña Carrera I; Alonso Calvete A
    Rehabilitacion (Madr); 2020; 54(2):128-136. PubMed ID: 32370827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effectiveness of robot-assisted gait training in children with cerebral palsy: a bicenter, pragmatic, randomized, cross-over trial (PeLoGAIT).
    Ammann-Reiffer C; Bastiaenen CH; Meyer-Heim AD; van Hedel HJ
    BMC Pediatr; 2017 Mar; 17(1):64. PubMed ID: 28253887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repeatability of EMG activity during exoskeleton assisted walking in children with cerebral palsy: implications for real time adaptable control.
    Bulea TC; Lerner ZF; Damiano DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2801-2804. PubMed ID: 30440983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.
    Louie DR; Eng JJ
    J Neuroeng Rehabil; 2016 Jun; 13(1):53. PubMed ID: 27278136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Custom sizing of lower limb exoskeleton actuators using gait dynamic modelling of children with cerebral palsy.
    Samadi B; Achiche S; Parent A; Ballaz L; Chouinard U; Raison M
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1519-24. PubMed ID: 26980164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy.
    Wallard L; Dietrich G; Kerlirzin Y; Bredin J
    Eur J Paediatr Neurol; 2017 May; 21(3):557-564. PubMed ID: 28188024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robot-assisted gait training using a very small-sized Hybrid Assistive Limb® for pediatric cerebral palsy: A case report.
    Kuroda M; Nakagawa S; Mutsuzaki H; Mataki Y; Yoshikawa K; Takahashi K; Nakayama T; Iwasaki N
    Brain Dev; 2020 Jun; 42(6):468-472. PubMed ID: 32249081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lessons learned from conducting a pragmatic, randomized, crossover trial on robot-assisted gait training in children with cerebral palsy (PeLoGAIT).
    Ammann-Reiffer C; Bastiaenen CHG; Meyer-Heim AD; van Hedel HJA
    J Pediatr Rehabil Med; 2020; 13(2):137-148. PubMed ID: 32444573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virtual reality combined with robot-assisted gait training to improve walking ability of children with cerebral palsy: A randomized controlled trial.
    Fu WS; Song YC; Wu BA; Qu CH; Zhao JF
    Technol Health Care; 2022; 30(6):1525-1533. PubMed ID: 35661029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATLAS2030 Pediatric Gait Exoskeleton: Changes on Range of Motion, Strength and Spasticity in Children With Cerebral Palsy. A Case Series Study.
    Delgado E; Cumplido C; Ramos J; Garcés E; Puyuelo G; Plaza A; Hernández M; Gutiérrez A; Taverner T; Destarac MA; Martínez M; García E
    Front Pediatr; 2021; 9():753226. PubMed ID: 34900862
    [No Abstract]   [Full Text] [Related]  

  • 35. Wearable rehabilitation exoskeletons of the lower limb: analysis of versatility and adaptability.
    Plaza A; Hernandez M; Puyuelo G; Garces E; Garcia E
    Disabil Rehabil Assist Technol; 2023 May; 18(4):392-406. PubMed ID: 33332159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker.
    Aycardi LF; Cifuentes CA; Múnera M; Bayón C; Ramírez O; Lerma S; Frizera A; Rocon E
    J Neuroeng Rehabil; 2019 Jan; 16(1):15. PubMed ID: 30691493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using a robotic exoskeleton at home: An activity tolerance case study of a child with spinal muscular atrophy.
    Garces E; Puyuelo G; Sánchez-Iglesias I; Francisco Del Rey JC; Cumplido C; Destarac M; Plaza A; Hernández M; Delgado E; Garcia E
    J Pediatr Nurs; 2022; 67():e71-e78. PubMed ID: 36192285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension.
    Shideler BL; Bulea TC; Chen J; Stanley CJ; Gravunder AJ; Damiano DL
    J Neuroeng Rehabil; 2020 Sep; 17(1):121. PubMed ID: 32883297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of a robotic-assisted gait training program with a program of functional gait training for children with cerebral palsy: design and methods of a two group randomized controlled cross-over trial.
    Hilderley AJ; Fehlings D; Lee GW; Wright FV
    Springerplus; 2016; 5(1):1886. PubMed ID: 27843743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a "transparent operation mode" for a lower-limb exoskeleton designed for children with cerebral palsy.
    Andrade RM; Sapienza S; Bonato P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():512-517. PubMed ID: 31374681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.