These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34219744)

  • 1. Opposite selectivities of tri-
    Li Z; Binnemans K
    AIChE J; 2021 Jul; 67(7):e17219. PubMed ID: 34219744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective removal of magnesium from lithium-rich brine for lithium purification by synergic solvent extraction using β-diketones and Cyanex 923.
    Li Z; Binnemans K
    AIChE J; 2020 Jul; 66(7):e16246. PubMed ID: 35866145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylammonium nitrate enhances the extraction of transition metal nitrates by tri-
    Li Z; Zhang Z; Onghena B; Li X; Binnemans K
    AIChE J; 2021 Jul; 67(7):e17213. PubMed ID: 34219743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent Extraction with Cyanex 923 to Remove Arsenic(V) from Solutions.
    Alguacil FJ; Escudero E; Robla JI
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer Inclusion Membranes with P507-TBP Carriers for Lithium Extraction from Brines.
    Zeng X; Xu L; Deng T; Zhang C; Xu W; Zhang W
    Membranes (Basel); 2022 Aug; 12(9):. PubMed ID: 36135858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction.
    Mansur MB; Rocha SD; Magalhães FS; Benedetto Jdos S
    J Hazard Mater; 2008 Feb; 150(3):669-78. PubMed ID: 17570579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive extraction of Li, Na, K, Mg and Ca ions from acidified aqueous solutions into chloroform layer containing diluted alkyl phosphates.
    El-Eswed BI; Sunjuk M; Ghuneim R; Al-Degs YS; Al Rimawi M; Albawarshi Y
    J Colloid Interface Sci; 2021 Apr; 587():229-239. PubMed ID: 33360895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of neodymium and dysprosium by solvent extraction using ionic liquids combined with neutral extractants: batch and mixer-settler experiments.
    Riaño S; Sobekova Foltova S; Binnemans K
    RSC Adv; 2019 Dec; 10(1):307-316. PubMed ID: 35492521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the mechanism of extraction of uranium (VI) from nitric acid solution into an ionic liquid by using tri-n-butyl phosphate.
    Gaillard DC; Boltoeva M; Billard I; Georg S; Mazan V; Ouadi A; Ternova D; Hennig C
    Chemphyschem; 2015 Aug; 16(12):2653-62. PubMed ID: 26149535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-phase extraction study of cyanex 923-n-heptane/H(2)SO(4) system.
    Liao W; Shang Q; Yu G; Li D
    Talanta; 2002 Jul; 57(6):1085-92. PubMed ID: 18968714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective recovery of valuable metals from spent Li-ion batteries using solvent-impregnated resins.
    Guo F; Nishihama S; Yoshizuka K
    Environ Technol; 2013; 34(9-12):1307-17. PubMed ID: 24191463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the complexation of Eu
    Sengupta A; Kadam RM
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():328-334. PubMed ID: 27682218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of Rare-Earth Elements from Nitrate Solutions by Solvent Extraction Using Mixtures of Methyltri-n-octylammonium Nitrate and Tri-n-butyl Phosphate.
    Stepanov SI; Hoa NTY; Boyarintseva EV; Boyarintsev AV; Kostikova GV; Tsivadze AY
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic investigation of solvent extraction based on anion-functionalized ionic liquids for selective separation of rare-earth ions.
    Sun X; Luo H; Dai S
    Dalton Trans; 2013 Jun; 42(23):8270-5. PubMed ID: 23595558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt products from real waste fractions of end of life lithium ion batteries.
    Pagnanelli F; Moscardini E; Altimari P; Abo Atia T; Toro L
    Waste Manag; 2016 May; 51():214-221. PubMed ID: 26564258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fundamental study on selective extraction of Li
    Xiong Y; Ge T; Xu L; Wang L; He J; Zhou X; Tian Y; Zhao Z
    J Environ Manage; 2022 May; 310():114705. PubMed ID: 35217444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of Metals from Electronic Waste-Printed Circuit Boards by Ionic Liquids, DESs and Organophosphorous-Based Acid Extraction.
    Łukomska A; Wiśniewska A; Dąbrowski Z; Lach J; Wróbel K; Kolasa D; Domańska U
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight of solvent extraction process: Reassessment of trace level determinations.
    Chandramouleeswaran S; Ramkumar J; Basu M
    Anal Chim Acta; 2016 Sep; 938():123-8. PubMed ID: 27619094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective leaching of spent lithium-ion batteries using DL-lactic acid as lixiviant and selective separation of metals through precipitation and solvent extraction.
    Sahu S; Devi N
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90152-90167. PubMed ID: 36520282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of iron(iii), zinc(ii) and lead(ii) from a choline chloride-ethylene glycol deep eutectic solvent by solvent extraction.
    Spathariotis S; Peeters N; Ryder KS; Abbott AP; Binnemans K; Riaño S
    RSC Adv; 2020 Sep; 10(55):33161-33170. PubMed ID: 35515064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.