These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34219835)
1. Investigating Magma Ocean Solidification on Earth Through Laser-Heated Diamond Anvil Cell Experiments. Nabiei F; Badro J; Boukaré CÉ; Hébert C; Cantoni M; Borensztajn S; Wehr N; Gillet P Geophys Res Lett; 2021 Jun; 48(12):e2021GL092446. PubMed ID: 34219835 [TBL] [Abstract][Full Text] [Related]
2. Aluminium control of argon solubility in silicate melts under pressure. Bouhifd MA; Jephcoat AP Nature; 2006 Feb; 439(7079):961-4. PubMed ID: 16495996 [TBL] [Abstract][Full Text] [Related]
3. Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite. Ismailova L; Bykova E; Bykov M; Cerantola V; McCammon C; Boffa Ballaran T; Bobrov A; Sinmyo R; Dubrovinskaia N; Glazyrin K; Liermann HP; Kupenko I; Hanfland M; Prescher C; Prakapenka V; Svitlyk V; Dubrovinsky L Sci Adv; 2016 Jul; 2(7):e1600427. PubMed ID: 27453945 [TBL] [Abstract][Full Text] [Related]
4. Low-spin ferric iron in primordial bridgmanite crystallized from a deep magma ocean. Okuda Y; Ohta K; Nishihara Y; Hirao N; Wakamatsu T; Suehiro S; Kawaguchi SI; Ohishi Y Sci Rep; 2021 Sep; 11(1):19471. PubMed ID: 34593901 [TBL] [Abstract][Full Text] [Related]
5. Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification. Xie L; Yoneda A; Yamazaki D; Manthilake G; Higo Y; Tange Y; Guignot N; King A; Scheel M; Andrault D Nat Commun; 2020 Jan; 11(1):548. PubMed ID: 31992697 [TBL] [Abstract][Full Text] [Related]
6. Temperature dependence of nitrogen solubility in bridgmanite and evolution of nitrogen storage capacity in the lower mantle. Fukuyama K; Kagi H; Inoue T; Kakizawa S; Shinmei T; Sano Y; Deligny C; Füri E Sci Rep; 2023 Mar; 13(1):3537. PubMed ID: 36864194 [TBL] [Abstract][Full Text] [Related]
7. Trace element partitioning in a deep magma ocean and the origin of the Hf-Nd mantle array. Ozawa K; Sakamoto N; Tsutsumi Y; Hirose K; Iizuka T; Yurimoto H Sci Adv; 2024 Aug; 10(33):eadp0021. PubMed ID: 39151010 [TBL] [Abstract][Full Text] [Related]
8. Fate of MgSiO3 melts at core-mantle boundary conditions. Petitgirard S; Malfait WJ; Sinmyo R; Kupenko I; Hennet L; Harries D; Dane T; Burghammer M; Rubie DC Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14186-90. PubMed ID: 26578761 [TBL] [Abstract][Full Text] [Related]
9. Spin crossover and iron-rich silicate melt in the Earth's deep mantle. Nomura R; Ozawa H; Tateno S; Hirose K; Hernlund J; Muto S; Ishii H; Hiraoka N Nature; 2011 May; 473(7346):199-202. PubMed ID: 21516105 [TBL] [Abstract][Full Text] [Related]
10. Solid-liquid iron partitioning in Earth's deep mantle. Andrault D; Petitgirard S; Lo Nigro G; Devidal JL; Veronesi G; Garbarino G; Mezouar M Nature; 2012 Jul; 487(7407):354-7. PubMed ID: 22810700 [TBL] [Abstract][Full Text] [Related]
11. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean. Murakami M; Bass JD Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17286-9. PubMed ID: 21969547 [TBL] [Abstract][Full Text] [Related]
12. Partitioning experiments in the laser-heated diamond anvil cell: volatile content in the Earth's core. Jephcoat AP; Bouhifd MA; Porcelli D Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4295-314. PubMed ID: 18852112 [TBL] [Abstract][Full Text] [Related]
13. Insights into magma ocean dynamics from the transport properties of basaltic melt. Bajgain SK; Ashley AW; Mookherjee M; Ghosh DB; Karki BB Nat Commun; 2022 Dec; 13(1):7590. PubMed ID: 36481757 [TBL] [Abstract][Full Text] [Related]
14. Natural Fe-bearing aluminous bridgmanite in the Katol L6 chondrite. Ghosh S; Tiwari K; Miyahara M; Rohrbach A; Vollmer C; Stagno V; Ohtani E; Ray D Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34588307 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen isotopic evidence for early oxidation of silicate Earth. Pahlevan K; Schaefer L; Hirschmann MM Earth Planet Sci Lett; 2019 Nov; 526():. PubMed ID: 33688096 [TBL] [Abstract][Full Text] [Related]
16. Hydrous magnesium-rich magma genesis at the top of the lower mantle. Nakajima A; Sakamaki T; Kawazoe T; Suzuki A Sci Rep; 2019 May; 9(1):7420. PubMed ID: 31092856 [TBL] [Abstract][Full Text] [Related]
17. In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures. Morard G; Hernandez JA; Guarguaglini M; Bolis R; Benuzzi-Mounaix A; Vinci T; Fiquet G; Baron MA; Shim SH; Ko B; Gleason AE; Mao WL; Alonso-Mori R; Lee HJ; Nagler B; Galtier E; Sokaras D; Glenzer SH; Andrault D; Garbarino G; Mezouar M; Schuster AK; Ravasio A Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11981-11986. PubMed ID: 32414927 [TBL] [Abstract][Full Text] [Related]
18. Davemaoite as the mantle mineral with the highest melting temperature. Yin K; Belonoshko AB; Li Y; Lu X Sci Adv; 2023 Dec; 9(49):eadj2660. PubMed ID: 38055828 [TBL] [Abstract][Full Text] [Related]
19. Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO Maeda F; Ohtani E; Kamada S; Sakamaki T; Hirao N; Ohishi Y Sci Rep; 2017 Jan; 7():40602. PubMed ID: 28084421 [TBL] [Abstract][Full Text] [Related]
20. Pressure stabilizes ferrous iron in bridgmanite under hydrous deep lower mantle conditions. Zhang L; Chen Y; Yang Z; Liu L; Yang Y; Dalladay-Simpson P; Wang J; Mao HK Nat Commun; 2024 May; 15(1):4333. PubMed ID: 38773099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]