These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 34220416)
1. Identification of Diagnostic Markers for Major Depressive Disorder Using Machine Learning Methods. Zhao S; Bao Z; Zhao X; Xu M; Li MD; Yang Z Front Neurosci; 2021; 15():645998. PubMed ID: 34220416 [TBL] [Abstract][Full Text] [Related]
2. Identifying neuroimaging biomarkers of major depressive disorder from cortical hemodynamic responses using machine learning approaches. Li Z; McIntyre RS; Husain SF; Ho R; Tran BX; Nguyen HT; Soo SC; Ho CS; Chen N EBioMedicine; 2022 May; 79():104027. PubMed ID: 35490557 [TBL] [Abstract][Full Text] [Related]
3. An association study of clock genes with major depressive disorder. Li Y; Miao P; Li F; Huang J; Fan L; Chen Q; Zhang Y; Yan F; Gao Y J Affect Disord; 2023 Nov; 341():147-153. PubMed ID: 37633529 [TBL] [Abstract][Full Text] [Related]
4. Construction of genetic classification model for coronary atherosclerosis heart disease using three machine learning methods. Peng W; Sun Y; Zhang L BMC Cardiovasc Disord; 2022 Feb; 22(1):42. PubMed ID: 35151267 [TBL] [Abstract][Full Text] [Related]
5. A diagnostic model based on bioinformatics and machine learning to differentiate bipolar disorder from schizophrenia and major depressive disorder. Shen J; Xiao C; Qiao X; Zhu Q; Yan H; Pan J; Feng Y Schizophrenia (Heidelb); 2024 Feb; 10(1):16. PubMed ID: 38355593 [TBL] [Abstract][Full Text] [Related]
6. Diagnosis of Major Depressive Disorder Using Machine Learning Based on Multisequence MRI Neuroimaging Features. Li Q; Dong F; Gai Q; Che K; Ma H; Zhao F; Chu T; Mao N; Wang P J Magn Reson Imaging; 2023 Nov; 58(5):1420-1430. PubMed ID: 36797655 [TBL] [Abstract][Full Text] [Related]
7. Identification of feature autophagy-related genes in patients with acute myocardial infarction based on bioinformatics analyses. Du Y; Zhao E; Zhang Y Biosci Rep; 2020 Jul; 40(7):. PubMed ID: 32597946 [TBL] [Abstract][Full Text] [Related]
8. Identification of Featured Metabolism-Related Genes in Patients with Acute Myocardial Infarction. Xie H; Zha E; Zhang Y Dis Markers; 2020; 2020():8880004. PubMed ID: 33354250 [TBL] [Abstract][Full Text] [Related]
9. Developing a Genetic Biomarker-based Diagnostic Model for Major Depressive Disorder using Random Forests and Artificial Neural Networks. Gu W; Ming T; Xie Z Comb Chem High Throughput Screen; 2023; 26(2):424-435. PubMed ID: 35379119 [TBL] [Abstract][Full Text] [Related]
10. A machine learning model for predicting patients with major depressive disorder: A study based on transcriptomic data. Liu S; Lu T; Zhao Q; Fu B; Wang H; Li G; Yang F; Huang J; Lyu N Front Neurosci; 2022; 16():949609. PubMed ID: 36003956 [TBL] [Abstract][Full Text] [Related]
11. [Identification of Characteristic lncRNA Molecular Markers in Osteoarthritis by Integrating GEO Database and Machine Learning Strategies and Experimental Validation]. Zhou Q; Liu J; Xin L; Fang Y; Qi Y; Hu Y Sichuan Da Xue Xue Bao Yi Xue Ban; 2023 Sep; 54(5):899-907. PubMed ID: 37866944 [TBL] [Abstract][Full Text] [Related]
12. ESRRG, ATP4A, and ATP4B as Diagnostic Biomarkers for Gastric Cancer: A Bioinformatic Analysis Based on Machine Learning. Chen Q; Wang Y; Liu Y; Xi B Front Physiol; 2022; 13():905523. PubMed ID: 35812327 [TBL] [Abstract][Full Text] [Related]
13. Resting-State EEG Signal for Major Depressive Disorder Detection: A Systematic Validation on a Large and Diverse Dataset. Wu CT; Huang HC; Huang S; Chen IM; Liao SC; Chen CK; Lin C; Lee SH; Chen MH; Tsai CF; Weng CH; Ko LW; Jung TP; Liu YH Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940256 [TBL] [Abstract][Full Text] [Related]
14. Machine learning and bioinformatic analysis of brain and blood mRNA profiles in major depressive disorder: A case-control study. Qi B; Ramamurthy J; Bennani I; Trakadis YJ Am J Med Genet B Neuropsychiatr Genet; 2021 Mar; 186(2):101-112. PubMed ID: 33645908 [TBL] [Abstract][Full Text] [Related]
15. Supervised machine learning to predict reduced depression severity in people with epilepsy through epilepsy self-management intervention. Camp EJ; Quon RJ; Sajatovic M; Briggs F; Brownrigg B; Janevic MR; Meisenhelter S; Steimel SA; Testorf ME; Kiriakopoulos E; Mazanec MT; Fraser RT; Johnson EK; Jobst BC Epilepsy Behav; 2022 Feb; 127():108548. PubMed ID: 35042160 [TBL] [Abstract][Full Text] [Related]
16. Machine learning assisted analysis of breast cancer gene expression profiles reveals novel potential prognostic biomarkers for triple-negative breast cancer. Thalor A; Kumar Joon H; Singh G; Roy S; Gupta D Comput Struct Biotechnol J; 2022; 20():1618-1631. PubMed ID: 35465161 [TBL] [Abstract][Full Text] [Related]
17. MSPJ: Discovering potential biomarkers in small gene expression datasets Yin H; Tao J; Peng Y; Xiong Y; Li B; Li S; Yang H Comput Struct Biotechnol J; 2022; 20():3783-3795. PubMed ID: 35891786 [TBL] [Abstract][Full Text] [Related]
18. Integrated Analysis of Methylomic and Transcriptomic Data to Identify Potential Diagnostic Biomarkers for Major Depressive Disorder. Xie Y; Xiao L; Chen L; Zheng Y; Zhang C; Wang G Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33513891 [TBL] [Abstract][Full Text] [Related]
19. An integrated machine learning framework for developing and validating a diagnostic model of major depressive disorder based on interstitial cystitis-related genes. Chen B; Sun X; Huang H; Feng C; Chen W; Wu D J Affect Disord; 2024 Aug; 359():22-32. PubMed ID: 38754597 [TBL] [Abstract][Full Text] [Related]
20. Classification of Major Depressive Disorder Based on Integrated Temporal and Spatial Functional MRI Variability Features of Dynamic Brain Network. Gai Q; Chu T; Che K; Li Y; Dong F; Zhang H; Li Q; Ma H; Shi Y; Zhao F; Liu J; Mao N; Xie H J Magn Reson Imaging; 2023 Sep; 58(3):827-837. PubMed ID: 36579618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]