BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 34220855)

  • 1. Endogenous Fructose Metabolism Could Explain the Warburg Effect and the Protection of SGLT2 Inhibitors in Chronic Kidney Disease.
    Nakagawa T; Sanchez-Lozada LG; Andres-Hernando A; Kojima H; Kasahara M; Rodriguez-Iturbe B; Bjornstad P; Lanaspa MA; Johnson RJ
    Front Immunol; 2021; 12():694457. PubMed ID: 34220855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal Tubular Handling of Glucose and Fructose in Health and Disease.
    Vallon V; Nakagawa T
    Compr Physiol; 2021 Dec; 12(1):2995-3044. PubMed ID: 34964123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fructose in the kidney: from physiology to pathology.
    Nakagawa T; Kang DH
    Kidney Res Clin Pract; 2021 Dec; 40(4):527-541. PubMed ID: 34781638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of sodium-glucose cotransporter 2 to slow the progression of chronic kidney disease.
    Oguz F; Demoulin N; Thissen JP; Jadoul M; Morelle J
    Acta Clin Belg; 2022 Aug; 77(4):805-814. PubMed ID: 34404335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sodium glucose co-transporter 2 inhibitors on the kidney.
    de Albuquerque Rocha N; Neeland IJ; McCullough PA; Toto RD; McGuire DK
    Diab Vasc Dis Res; 2018 Sep; 15(5):375-386. PubMed ID: 29963920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.
    Ding H; Jiang L; Xu J; Bai F; Zhou Y; Yuan Q; Luo J; Zen K; Yang J
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F561-F575. PubMed ID: 28228400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways.
    Yaribeygi H; Butler AE; Atkin SL; Katsiki N; Sahebkar A
    J Cell Physiol; 2018 Jan; 234(1):223-230. PubMed ID: 30076706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uric acid and the cardio-renal effects of SGLT2 inhibitors.
    Bailey CJ
    Diabetes Obes Metab; 2019 Jun; 21(6):1291-1298. PubMed ID: 30762288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-glucose cotransporter-2 inhibitors for diabetic kidney disease: Targeting Warburg effects in proximal tubular cells.
    Morita M; Kanasaki K
    Diabetes Metab; 2020 Oct; 46(5):353-361. PubMed ID: 32891754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes-cardiovascular and renal benefits in patients with chronic kidney disease.
    Milder TY; Stocker SL; Samocha-Bonet D; Day RO; Greenfield JR
    Eur J Clin Pharmacol; 2019 Nov; 75(11):1481-1490. PubMed ID: 31377891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fructose Production and Metabolism in the Kidney.
    Nakagawa T; Johnson RJ; Andres-Hernando A; Roncal-Jimenez C; Sanchez-Lozada LG; Tolan DR; Lanaspa MA
    J Am Soc Nephrol; 2020 May; 31(5):898-906. PubMed ID: 32253274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms Leading to Differential Hypoxia-Inducible Factor Signaling in the Diabetic Kidney: Modulation by SGLT2 Inhibitors and Hypoxia Mimetics.
    Packer M
    Am J Kidney Dis; 2021 Feb; 77(2):280-286. PubMed ID: 32711072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-Glucose Cotransporter 2 Inhibitors in Patients with Non-Diabetic Chronic Kidney Disease.
    Mima A
    Adv Ther; 2021 May; 38(5):2201-2212. PubMed ID: 33860925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of renal and cardiovascular protection mechanisms of SGLT2 inhibitors: model-based analysis of clinical data.
    Hallow KM; Greasley PJ; Helmlinger G; Chu L; Heerspink HJ; Boulton DW
    Am J Physiol Renal Physiol; 2018 Nov; 315(5):F1295-F1306. PubMed ID: 30019930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal Effects of Sodium-Glucose Co-Transporter Inhibitors.
    Thomson SC; Vallon V
    Am J Cardiol; 2019 Dec; 124 Suppl 1(Suppl 1):S28-S35. PubMed ID: 31741437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing SGLT inhibitor treatment for diabetes with chronic kidney diseases.
    Layton AT
    Biol Cybern; 2019 Apr; 113(1-2):139-148. PubMed ID: 29955959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells.
    Cirillo P; Gersch MS; Mu W; Scherer PM; Kim KM; Gesualdo L; Henderson GN; Johnson RJ; Sautin YY
    J Am Soc Nephrol; 2009 Mar; 20(3):545-53. PubMed ID: 19158351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-Glucose Linked Cotransporter-2 Inhibition Does Not Attenuate Disease Progression in the Rat Remnant Kidney Model of Chronic Kidney Disease.
    Zhang Y; Thai K; Kepecs DM; Gilbert RE
    PLoS One; 2016; 11(1):e0144640. PubMed ID: 26741142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium-glucose cotransporter 2 inhibition: which patient with chronic kidney disease should be treated in the future?
    Neuen BL; Jardine MJ; Perkovic V
    Nephrol Dial Transplant; 2020 Jan; 35(Suppl 1):i48-i55. PubMed ID: 32003833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SGLT2 Inhibitors and Kidney Protection: Mechanisms Beyond Tubuloglomerular Feedback.
    Upadhyay A
    Kidney360; 2024 May; 5(5):771-782. PubMed ID: 38523127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.