These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 34221208)
1. Role of MicroRNA-155 as a Potential Biomarker for Allergic Rhinitis in Children. Hammad NM; Nabil F; Elbehedy EM; Sedeek R; Gouda MI; Arafa MA; Elalawi SM; El Shahawy AA Can Respir J; 2021; 2021():5554461. PubMed ID: 34221208 [TBL] [Abstract][Full Text] [Related]
2. Serum microRNA-223 as a potential biomarker for allergic rhinitis and its correlation to eosinophil-derived neurotoxin. Nabil F; Alnemr MA; Saadawy SF; Mahrous HKA; Fahmy YA Egypt J Immunol; 2024 Jan; 31(1):10-19. PubMed ID: 38224031 [TBL] [Abstract][Full Text] [Related]
3. Expression and diagnostic value of miR-142-5p and miR-155-5p in the serum of children with allergic rhinitis. Liu H; Ma G; Xing E; Xu M; Song X; Zhang Y Int J Pediatr Otorhinolaryngol; 2023 Feb; 165():111425. PubMed ID: 36696711 [TBL] [Abstract][Full Text] [Related]
4. A novel microRNA miR-1165-3p as a potential diagnostic biomarker for allergic asthma. Wu C; Xu K; Wang Z; Chen Z; Sun Z; Yu W; Ji N; Huang M; Zhang M Biomarkers; 2019 Feb; 24(1):56-63. PubMed ID: 30015513 [TBL] [Abstract][Full Text] [Related]
5. lnc-THRIL and miR-125b relate to disease risk, severity, and imbalance of Th1 cells/Th2 cells in allergic rhinitis. Song J; Liu D; Yin W Allergol Immunopathol (Madr); 2022; 50(3):15-23. PubMed ID: 35527652 [TBL] [Abstract][Full Text] [Related]
6. Correlation between Serum Osteopontin and miR-181a Levels in Allergic Rhinitis Children. Liu W; Zeng Q; Luo R Mediators Inflamm; 2016; 2016():9471215. PubMed ID: 27199509 [TBL] [Abstract][Full Text] [Related]
7. Correlation between miR-223 and IL-35 and their regulatory effect in children with allergic rhinitis. Ruan G; Wen X; Yuan Z Clin Immunol; 2020 May; 214():108383. PubMed ID: 32169441 [TBL] [Abstract][Full Text] [Related]
8. The correlation of long non-coding RNA NEAT1 and its targets microRNA (miR)-21, miR-124, and miR-125a with disease risk, severity, and inflammation of allergic rhinitis. Wang R; Xue S; Liu Y; Peng M; Guo B Medicine (Baltimore); 2021 Jan; 100(4):e22946. PubMed ID: 33530155 [TBL] [Abstract][Full Text] [Related]
9. Peripheral Multiple Cytokine Profiles Identified CD39 as a Novel Biomarker for Diagnosis and Reflecting Disease Severity in Allergic Rhinitis Patients. Jiang Y; Hu W; Cai Z; Lin C; Ye S Mediators Inflamm; 2023; 2023():3217261. PubMed ID: 37207043 [TBL] [Abstract][Full Text] [Related]
10. Long non-coding RNA growth arrest-specific 5 and its targets, microRNA-21 and microRNA-140, are potential biomarkers of allergic rhinitis. Song J; Wang T; Chen Y; Cen R J Clin Lab Anal; 2021 Oct; 35(10):e23938. PubMed ID: 34473845 [TBL] [Abstract][Full Text] [Related]
11. Aberrant expressions of circulating lncRNA NEAT1 and microRNA-125a are linked with Th2 cells and symptom severity in pediatric allergic rhinitis. Wu X; Zhao S; Huang W; Huang L; Huang M; Luo X; Chang S J Clin Lab Anal; 2022 Mar; 36(3):e24235. PubMed ID: 35064698 [TBL] [Abstract][Full Text] [Related]
12. MicroRNA-155 plays critical effects on Th2 factors expression and allergic inflammatory response in type-2 innate lymphoid cells in allergic rhinitis. Zhu YQ; Liao B; Liu YH; Wang Z; Zhu XH; Chen XB; Wang MQ Eur Rev Med Pharmacol Sci; 2019 May; 23(10):4097-4109. PubMed ID: 31173279 [TBL] [Abstract][Full Text] [Related]
13. Decreased Treg-derived miR-181a and miR-155 correlated with reduced number and function of Treg cells in allergic rhinitis children. Liu W; Ouyang H; Zeng Q; Luo R; Lu G Eur Arch Otorhinolaryngol; 2019 Apr; 276(4):1089-1094. PubMed ID: 30673848 [TBL] [Abstract][Full Text] [Related]
14. [Changes of serum miR-375 and blood target genes in patients with allergic rhinitis before and after treatment and its significance]. Xu G; Xie Q; Zhou H Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2019 Jul; 44(7):767-774. PubMed ID: 31413214 [TBL] [Abstract][Full Text] [Related]
15. Correlation of microRNA profiles with disease risk and severity of allergic rhinitis. Jia M; Chu C; Wang M Int J Clin Exp Pathol; 2018; 11(3):1791-1802. PubMed ID: 31938286 [TBL] [Abstract][Full Text] [Related]
16. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Elbehidy RM; Youssef DM; El-Shal AS; Shalaby SM; Sherbiny HS; Sherief LM; Akeel NE Mol Immunol; 2016 Mar; 71():107-114. PubMed ID: 26874829 [TBL] [Abstract][Full Text] [Related]
17. MicroRNA-133b Ameliorates Allergic Inflammation and Symptom in Murine Model of Allergic Rhinitis by Targeting Nlrp3. Xiao L; Jiang L; Hu Q; Li Y Cell Physiol Biochem; 2017; 42(3):901-912. PubMed ID: 28662502 [TBL] [Abstract][Full Text] [Related]
18. The role and correlation of IL-35 and type II intrinsic lymphocytes in children with allergic rhinitis. Huang L; Zhao M; Luo Q; Liang K; Iu CL Cell Mol Biol (Noisy-le-grand); 2021 Aug; 67(2):127-131. PubMed ID: 34817328 [TBL] [Abstract][Full Text] [Related]
19. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. Panganiban RP; Wang Y; Howrylak J; Chinchilli VM; Craig TJ; August A; Ishmael FT J Allergy Clin Immunol; 2016 May; 137(5):1423-32. PubMed ID: 27025347 [TBL] [Abstract][Full Text] [Related]
20. Obesity Can Contribute to Severe Persistent Allergic Rhinitis in Children through Leptin and Interleukin-1β. Han MW; Kim SH; Oh I; Kim YH; Lee J Int Arch Allergy Immunol; 2021; 182(6):546-552. PubMed ID: 33657554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]