These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 34222229)

  • 1. Regulation of Osteoclastogenesis and Bone Resorption by miRNAs.
    Inoue K; Ng C; Xia Y; Zhao B
    Front Cell Dev Biol; 2021; 9():651161. PubMed ID: 34222229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoclastic microRNAs and their translational potential in skeletal diseases.
    Inoue K; Nakano S; Zhao B
    Semin Immunopathol; 2019 Sep; 41(5):573-582. PubMed ID: 31591677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis.
    Ji X; Chen X; Yu X
    Int J Mol Sci; 2016 Mar; 17(3):349. PubMed ID: 27005616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The expression and function of microRNAs in bone homeostasis.
    Pi C; Li YP; Zhou X; Gao B
    Front Biosci (Landmark Ed); 2015 Jan; 20(1):119-38. PubMed ID: 25553443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miRNAs in osteoclast biology.
    Weivoda MM; Lee SK; Monroe DG
    Bone; 2021 Feb; 143():115757. PubMed ID: 33212320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway analysis of microRNA expression profile during murine osteoclastogenesis.
    Franceschetti T; Dole NS; Kessler CB; Lee SK; Delany AM
    PLoS One; 2014; 9(9):e107262. PubMed ID: 25222202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms involved in normal and pathological osteoclastogenesis.
    Park-Min KH
    Cell Mol Life Sci; 2018 Jul; 75(14):2519-2528. PubMed ID: 29670999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-31 controls osteoclast formation and bone resorption by targeting RhoA.
    Mizoguchi F; Murakami Y; Saito T; Miyasaka N; Kohsaka H
    Arthritis Res Ther; 2013; 15(5):R102. PubMed ID: 24004633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological aspects of altered bone remodeling in multiple myeloma and possibilities of pharmacological intervention.
    Kupisiewicz K
    Dan Med Bull; 2011 May; 58(5):B4277. PubMed ID: 21535989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. miRNA-27a is essential for bone remodeling by modulating p62-mediated osteoclast signaling.
    Wang S; Maruyama EO; Martinez J; Lopes J; Hsu T; Wu W; Hsu W; Maruyama T
    Elife; 2023 Feb; 12():. PubMed ID: 36752600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNAs and their roles in osteoclast differentiation.
    Xia Z; Chen C; Chen P; Xie H; Luo X
    Front Med; 2011 Dec; 5(4):414-9. PubMed ID: 22198753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synovium-Derived MicroRNAs Regulate Bone Pathways in Rheumatoid Arthritis.
    Maeda Y; Farina NH; Matzelle MM; Fanning PJ; Lian JB; Gravallese EM
    J Bone Miner Res; 2017 Mar; 32(3):461-472. PubMed ID: 27676131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minireview: nuclear receptor regulation of osteoclast and bone remodeling.
    Jin Z; Li X; Wan Y
    Mol Endocrinol; 2015 Feb; 29(2):172-86. PubMed ID: 25549044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA functions in osteogenesis and dysfunctions in osteoporosis.
    van Wijnen AJ; van de Peppel J; van Leeuwen JP; Lian JB; Stein GS; Westendorf JJ; Oursler MJ; Im HJ; Taipaleenmäki H; Hesse E; Riester S; Kakar S
    Curr Osteoporos Rep; 2013 Jun; 11(2):72-82. PubMed ID: 23605904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water extract of Spatholobus suberectus inhibits osteoclast differentiation and bone resorption.
    Ha H; Shim KS; An H; Kim T; Ma JY
    BMC Complement Altern Med; 2013 May; 13():112. PubMed ID: 23692684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors.
    Zhao B; Ivashkiv LB
    Arthritis Res Ther; 2011 Jul; 13(4):234. PubMed ID: 21861861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoclast fusion and regulation by RANKL-dependent and independent factors.
    Xing L; Xiu Y; Boyce BF
    World J Orthop; 2012 Dec; 3(12):212-22. PubMed ID: 23362465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sanguiin H-6, a constituent of Rubus parvifolius L., inhibits receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis and bone resorption in vitro and prevents tumor necrosis factor-α-induced osteoclast formation in vivo.
    Sakai E; Aoki Y; Yoshimatsu M; Nishishita K; Iwatake M; Fukuma Y; Okamoto K; Tanaka T; Tsukuba T
    Phytomedicine; 2016 Jul; 23(8):828-37. PubMed ID: 27288918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory network mediated by RBP-J/NFATc1-miR182 controls inflammatory bone resorption.
    Inoue K; Hu X; Zhao B
    FASEB J; 2020 Feb; 34(2):2392-2407. PubMed ID: 31908034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications.
    Bordukalo-Nikšić T; Kufner V; Vukičević S
    Front Immunol; 2022; 13():869422. PubMed ID: 35558080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.