These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 34222230)

  • 1. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases.
    Carrella S; Massa F; Indrieri A
    Front Cell Dev Biol; 2021; 9():653522. PubMed ID: 34222230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essential roles of mitochondrial biogenesis regulator Nrf1 in retinal development and homeostasis.
    Kiyama T; Chen CK; Wang SW; Pan P; Ju Z; Wang J; Takada S; Klein WH; Mao CA
    Mol Neurodegener; 2018 Oct; 13(1):56. PubMed ID: 30333037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors.
    Brown EE; DeWeerd AJ; Ildefonso CJ; Lewin AS; Ash JD
    Redox Biol; 2019 Jun; 24():101201. PubMed ID: 31039480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting microRNA dysregulation in age-related macular degeneration: new targets for eye gene therapy.
    Askou AL; Alsing S; Holmgaard A; Bek T; Corydon TJ
    Acta Ophthalmol; 2018 Feb; 96(1):9-23. PubMed ID: 28271607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina.
    Schnichels S; Paquet-Durand F; Löscher M; Tsai T; Hurst J; Joachim SC; Klettner A
    Prog Retin Eye Res; 2021 Mar; 81():100880. PubMed ID: 32721458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial Dysfunction in the Aging Retina.
    Eells JT
    Biology (Basel); 2019 May; 8(2):. PubMed ID: 31083549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress damage circumscribed to the central temporal retinal pigment epithelium in early experimental non-exudative age-related macular degeneration.
    Dieguez HH; Romeo HE; Alaimo A; González Fleitas MF; Aranda ML; Rosenstein RE; Dorfman D
    Free Radic Biol Med; 2019 Feb; 131():72-80. PubMed ID: 30502459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial dysfunction underlying outer retinal diseases.
    Lefevere E; Toft-Kehler AK; Vohra R; Kolko M; Moons L; Van Hove I
    Mitochondrion; 2017 Sep; 36():66-76. PubMed ID: 28365408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment and prevention of pathological mitochondrial dysfunction in retinal degeneration and in photoreceptor injury.
    Moos WH; Faller DV; Glavas IP; Harpp DN; Kamperi N; Kanara I; Kodukula K; Mavrakis AN; Pernokas J; Pernokas M; Pinkert CA; Powers WR; Sampani K; Steliou K; Tamvakopoulos C; Vavvas DG; Zamboni RJ; Chen X
    Biochem Pharmacol; 2022 Sep; 203():115168. PubMed ID: 35835206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The retina/RPE proteome in chick myopia and hyperopia models: Commonalities with inherited and age-related ocular pathologies.
    Riddell N; Faou P; Murphy M; Giummarra L; Downs RA; Rajapaksha H; Crewther SG
    Mol Vis; 2017; 23():872-888. PubMed ID: 29259393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis.
    Xiong F; Du X; Hu J; Li T; Du S; Wu Q
    Curr Eye Res; 2014 Jul; 39(7):720-9. PubMed ID: 24502381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy?
    Ao J; Wood JP; Chidlow G; Gillies MC; Casson RJ
    Clin Exp Ophthalmol; 2018 Aug; 46(6):670-686. PubMed ID: 29205705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GSK3β-mediated tau hyperphosphorylation triggers diabetic retinal neurodegeneration by disrupting synaptic and mitochondrial functions.
    Zhu H; Zhang W; Zhao Y; Shu X; Wang W; Wang D; Yang Y; He Z; Wang X; Ying Y
    Mol Neurodegener; 2018 Nov; 13(1):62. PubMed ID: 30466464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.
    Lopez Sanchez MI; Crowston JG; Mackey DA; Trounce IA
    Pharmacol Ther; 2016 Sep; 165():132-52. PubMed ID: 27288727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-processing Enzymes Are Essential for Survival and Function of Mature Retinal Pigmented Epithelial Cells in Mice.
    Sundermeier TR; Sakami S; Sahu B; Howell SJ; Gao S; Dong Z; Golczak M; Maeda A; Palczewski K
    J Biol Chem; 2017 Feb; 292(8):3366-3378. PubMed ID: 28104803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Promising Tool in Retina Regeneration: Current Perspectives and Challenges When Using Mesenchymal Progenitor Stem Cells in Veterinary and Human Ophthalmological Applications.
    Cislo-Pakuluk A; Marycz K
    Stem Cell Rev Rep; 2017 Oct; 13(5):598-602. PubMed ID: 28643176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial DNA damage and its potential role in retinal degeneration.
    Jarrett SG; Lin H; Godley BF; Boulton ME
    Prog Retin Eye Res; 2008 Nov; 27(6):596-607. PubMed ID: 18848639
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Zhang M; Chu Y; Mowery J; Konkel B; Galli S; Theos AC; Golestaneh N
    Dis Model Mech; 2018 Aug; 11(9):. PubMed ID: 29925537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exosomal MicroRNA Discovery in Age-Related Macular Degeneration.
    Elshelmani H; Rani S
    Methods Mol Biol; 2017; 1509():93-113. PubMed ID: 27826921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional imaging of mitochondria in retinal diseases using flavoprotein fluorescence.
    Chen AX; Conti TF; Hom GL; Greenlee TE; Raimondi R; Briskin IN; Rich CA; Kampani R; Engel R; Sharma S; Talcott KE; Singh RP
    Eye (Lond); 2021 Jan; 35(1):74-92. PubMed ID: 32709959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.