BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34222257)

  • 1. Sphingolipids as Modulators of SARS-CoV-2 Infection.
    Törnquist K; Asghar MY; Srinivasan V; Korhonen L; Lindholm D
    Front Cell Dev Biol; 2021; 9():689854. PubMed ID: 34222257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the SphK-S1P-SIPR Pathway as a Potential Therapeutic Approach for COVID-19.
    McGowan EM; Haddadi N; Nassif NT; Lin Y
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 33003377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingosine prevents binding of SARS-CoV-2 spike to its cellular receptor ACE2.
    Edwards MJ; Becker KA; Gripp B; Hoffmann M; Keitsch S; Wilker B; Soddemann M; Gulbins A; Carpinteiro E; Patel SH; Wilson GC; Pöhlmann S; Walter S; Fassbender K; Ahmad SA; Carpinteiro A; Gulbins E
    J Biol Chem; 2020 Nov; 295(45):15174-15182. PubMed ID: 32917722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host sphingolipids: Perspective immune adjuvant for controlling SARS-CoV-2 infection for managing COVID-19 disease.
    Prakash H; Upadhyay D; Bandapalli OR; Jain A; Kleuser B
    Prostaglandins Other Lipid Mediat; 2021 Feb; 152():106504. PubMed ID: 33147503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC.
    Anand P; Puranik A; Aravamudan M; Venkatakrishnan AJ; Soundararajan V
    Elife; 2020 May; 9():. PubMed ID: 32452762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart.
    Liu H; Gai S; Wang X; Zeng J; Sun C; Zhao Y; Zheng Z
    Cardiovasc Res; 2020 Aug; 116(10):1733-1741. PubMed ID: 32638018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
    Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators.
    Gkogkou E; Barnasas G; Vougas K; Trougakos IP
    Redox Biol; 2020 Sep; 36():101615. PubMed ID: 32863223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection.
    Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB
    Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Update on Sphingosine-1-Phosphate and Lysophosphatidic Acid Receptor Transcripts in Rodent Olfactory Mucosa.
    Toebbe JT; Genter MB
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broad and Differential Animal Angiotensin-Converting Enzyme 2 Receptor Usage by SARS-CoV-2.
    Zhao X; Chen D; Szabla R; Zheng M; Li G; Du P; Zheng S; Li X; Song C; Li R; Guo JT; Junop M; Zeng H; Lin H
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32661139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights on SARS-CoV-2 Molecular Interactions With the Renin-Angiotensin System.
    Costa LB; Perez LG; Palmeira VA; Macedo E Cordeiro T; Ribeiro VT; Lanza K; Simões E Silva AC
    Front Cell Dev Biol; 2020; 8():559841. PubMed ID: 33042994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Binding to ACE2 Receptors from Human, Pets, Farm Animals, and Putative Intermediate Hosts.
    Zhai X; Sun J; Yan Z; Zhang J; Zhao J; Zhao Z; Gao Q; He WT; Veit M; Su S
    J Virol; 2020 Jul; 94(15):. PubMed ID: 32404529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coronavirus disease 2019 and asthma, allergic rhinitis: molecular mechanisms and host-environmental interactions.
    Wakabayashi M; Pawankar R; Narazaki H; Ueda T; Itabashi T
    Curr Opin Allergy Clin Immunol; 2021 Feb; 21(1):1-7. PubMed ID: 33186186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population-Specific
    Hashizume M; Gonzalez G; Ono C; Takashima A; Iwasaki M
    Viruses; 2021 Jan; 13(1):. PubMed ID: 33418950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19.
    Ni W; Yang X; Yang D; Bao J; Li R; Xiao Y; Hou C; Wang H; Liu J; Yang D; Xu Y; Cao Z; Gao Z
    Crit Care; 2020 Jul; 24(1):422. PubMed ID: 32660650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the SphK-S1P-S1PRs pathway in invasion of the nervous system by SARS-CoV-2 infection.
    Pan Y; Gao F; Zhao S; Han J; Chen F
    Clin Exp Pharmacol Physiol; 2021 May; 48(5):637-650. PubMed ID: 33565127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential pathogenesis of severe acute respiratory syndrome coronavirus 2.
    Wu T; Zhang H; Hu E; Ma J
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2020 May; 45(5):591-597. PubMed ID: 32879112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells.
    Carpinteiro A; Edwards MJ; Hoffmann M; Kochs G; Gripp B; Weigang S; Adams C; Carpinteiro E; Gulbins A; Keitsch S; Sehl C; Soddemann M; Wilker B; Kamler M; Bertsch T; Lang KS; Patel S; Wilson GC; Walter S; Hengel H; Pöhlmann S; Lang PA; Kornhuber J; Becker KA; Ahmad SA; Fassbender K; Gulbins E
    Cell Rep Med; 2020 Nov; 1(8):100142. PubMed ID: 33163980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repurposing of approved drugs with potential to interact with SARS-CoV-2 receptor.
    Ahsan T; Sajib AA
    Biochem Biophys Rep; 2021 Jul; 26():100982. PubMed ID: 33817352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.