These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34222309)

  • 1. New Insight Into the Structure-Activity Relationship of Sweet-Tasting Proteins: Protein Sector and Its Role for Sweet Properties.
    Zhao X; Wang C; Zheng Y; Liu B
    Front Nutr; 2021; 8():691368. PubMed ID: 34222309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure basis of the improved sweetness and thermostability of a unique double-sites single-chain sweet-tasting protein monellin (MNEI) mutant.
    Zhao M; Xu X; Liu B
    Biochimie; 2018 Nov; 154():156-163. PubMed ID: 30195051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Flexible Loop is a New Sweetness Determinant Site of the Sweet-Tasting Protein: Characterization of Novel Sweeter Mutants of the Single-Chain Monellin (MNEI).
    Yang L; Zhu K; Yu H; Zhang X; Liu B
    Chem Senses; 2019 Oct; 44(8):607-614. PubMed ID: 31504288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cysteine-rich domain of human T1R3 is necessary for the interaction between human T1R2-T1R3 sweet receptors and a sweet-tasting protein, thaumatin.
    Ohta K; Masuda T; Tani F; Kitabatake N
    Biochem Biophys Res Commun; 2011 Mar; 406(3):435-8. PubMed ID: 21329673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypothesis/review: the structural basis of sweetness perception of sweet-tasting plant proteins can be deduced from sequence analysis.
    Wintjens R; Viet TM; Mbosso E; Huet J
    Plant Sci; 2011 Oct; 181(4):347-54. PubMed ID: 21889040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of interaction of sweet proteins with the T1R2-T1R3 receptor: evidence from the solution structure of G16A-MNEI.
    Spadaccini R; Trabucco F; Saviano G; Picone D; Crescenzi O; Tancredi T; Temussi PA
    J Mol Biol; 2003 May; 328(3):683-92. PubMed ID: 12706725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor.
    Temussi PA
    FEBS Lett; 2002 Aug; 526(1-3):1-4. PubMed ID: 12208493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of the sweet-tasting proteins thaumatin and lysozyme with the human sweet-taste receptor.
    Ide N; Sato E; Ohta K; Masuda T; Kitabatake N
    J Agric Food Chem; 2009 Jul; 57(13):5884-90. PubMed ID: 19489607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sweeteners and sweetness enhancers.
    Belloir C; Neiers F; Briand L
    Curr Opin Clin Nutr Metab Care; 2017 Jul; 20(4):279-285. PubMed ID: 28399012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor.
    Masuda T; Kigo S; Mitsumoto M; Ohta K; Suzuki M; Mikami B; Kitabatake N; Tani F
    Front Mol Biosci; 2018; 5():10. PubMed ID: 29487853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of the N-terminal methionine improves the sweetness of the recombinant expressed sweet-tasting protein brazzein and its mutants in Escherichia coli.
    Liu B; Jiang H; Wang H; Yang L
    J Food Biochem; 2021 Mar; 45(3):e13354. PubMed ID: 32614080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction of a negative charge at Arg82 in thaumatin abolished responses to human T1R2-T1R3 sweet receptors.
    Ohta K; Masuda T; Tani F; Kitabatake N
    Biochem Biophys Res Commun; 2011 Sep; 413(1):41-5. PubMed ID: 21867681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential improvement of the thermal stability of sweet-tasting proteins by structural calculations.
    Tang N; Liu J; Cheng Y
    Food Chem; 2021 May; 345():128750. PubMed ID: 33302109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins.
    Jiang P; Ji Q; Liu Z; Snyder LA; Benard LM; Margolskee RF; Max M
    J Biol Chem; 2004 Oct; 279(43):45068-75. PubMed ID: 15299024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple mutations of the critical amino acid residues for the sweetness of the sweet-tasting protein, brazzein.
    Lee JW; Cha JE; Jo HJ; Kong KH
    Food Chem; 2013 Jun; 138(2-3):1370-3. PubMed ID: 23411256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of the Sweetness and Stability of Sweet-Tasting Protein Monellin by Gene Mutation and Protein Engineering.
    Liu Q; Li L; Yang L; Liu T; Cai C; Liu B
    Biomed Res Int; 2016; 2016():3647173. PubMed ID: 26881217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein.
    Assadi-Porter FM; Aceti DJ; Markley JL
    Arch Biochem Biophys; 2000 Apr; 376(2):259-65. PubMed ID: 10775411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid-Lowering Pharmaceutical Clofibrate Inhibits Human Sweet Taste.
    Kochem M; Breslin PA
    Chem Senses; 2017 Jan; 42(1):79-83. PubMed ID: 27742692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical molecular regions for elicitation of the sweetness of the sweet-tasting protein, thaumatin I.
    Ohta K; Masuda T; Ide N; Kitabatake N
    FEBS J; 2008 Jul; 275(14):3644-52. PubMed ID: 18544096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Sweet Taste of Acarbose and Maltotriose: Relative Detection and Underlying Mechanism.
    Pullicin AJ; Penner MH; Lim J
    Chem Senses; 2019 Jan; 44(2):123-128. PubMed ID: 30590468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.