These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 34222344)

  • 21. Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders.
    Christie KA; Courtney DG; DeDionisio LA; Shern CC; De Majumdar S; Mairs LC; Nesbit MA; Moore CBT
    Sci Rep; 2017 Nov; 7(1):16174. PubMed ID: 29170458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA-Independent DNA Cleavage Activities of Cas9 and Cas12a.
    Sundaresan R; Parameshwaran HP; Yogesha SD; Keilbarth MW; Rajan R
    Cell Rep; 2017 Dec; 21(13):3728-3739. PubMed ID: 29281823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-molecule FRET studies of Cas9 endonuclease.
    Globyte V; Joo C
    Methods Enzymol; 2019; 616():313-335. PubMed ID: 30691649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Speed genome editing by transient CRISPR/Cas9 targeting and large DNA fragment deletion.
    Luo J; Lu L; Gu Y; Huang R; Gui L; Li S; Qi X; Zheng W; Chao T; Zheng Q; Liang Y; Zhang L
    J Biotechnol; 2018 Sep; 281():11-20. PubMed ID: 29886029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.
    Kennedy EM; Cullen BR
    Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.
    Shibata M; Nishimasu H; Kodera N; Hirano S; Ando T; Uchihashi T; Nureki O
    Nat Commun; 2017 Nov; 8(1):1430. PubMed ID: 29127285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of CRISPR/Cas9 for Gene Editing in Hereditary Movement Disorders.
    Im W; Moon J; Kim M
    J Mov Disord; 2016 Sep; 9(3):136-43. PubMed ID: 27667185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells.
    Yang L; Grishin D; Wang G; Aach J; Zhang CZ; Chari R; Homsy J; Cai X; Zhao Y; Fan JB; Seidman C; Seidman J; Pu W; Church G
    Nat Commun; 2014 Nov; 5():5507. PubMed ID: 25425480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo.
    Yarrington RM; Verma S; Schwartz S; Trautman JK; Carroll D
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9351-9358. PubMed ID: 30201707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.
    Palermo G; Ricci CG; Fernando A; Basak R; Jinek M; Rivalta I; Batista VS; McCammon JA
    J Am Chem Soc; 2017 Nov; 139(45):16028-16031. PubMed ID: 28764328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Short-Homology-Mediated CRISPR/Cas9-Based Method for Genome Editing in Fission Yeast.
    Hayashi A; Tanaka K
    G3 (Bethesda); 2019 Apr; 9(4):1153-1163. PubMed ID: 30755408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion.
    Globyte V; Lee SH; Bae T; Kim JS; Joo C
    EMBO J; 2019 Feb; 38(4):. PubMed ID: 30573670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein.
    Dhokane D; Bhadra B; Dasgupta S
    Mol Biol Rep; 2020 Nov; 47(11):8747-8755. PubMed ID: 33074412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta.
    Johnson RA; Gurevich V; Filler S; Samach A; Levy AA
    Plant Mol Biol; 2015 Jan; 87(1-2):143-56. PubMed ID: 25403732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Erratum: HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing.
    Liu N; Zhou L; Lin G; Hu Y; Jiao Y; Wang Y; Liu J; Yang S; Yao S
    Mol Ther Nucleic Acids; 2022 Dec; 30():173. PubMed ID: 36250209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Erratum: Inflammation conditional genome editing mediated by the CRISPR-Cas9 system.
    Yuan T; Tang H; Xu X; Shao J; Wu G; Cho YC; Ping Y; Liang G
    iScience; 2023 Jul; 26(7):107251. PubMed ID: 37456830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Erratum: Correction Notice: Improved HTGTS for CRISPR/Cas9 Off-target Detection.
    Yin J; Liu M; Liu Y; Hu J
    Bio Protoc; 2019 Dec; 9(23):. PubMed ID: 38155635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Erratum: A DNA Methylation-Based Panel for the Prognosis and Diagnosis of Patients With Breast Cancer and Its Mechanisms.
    Frontiers Production Office
    Front Mol Biosci; 2020; 7():596445. PubMed ID: 33282913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.