These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34223562)

  • 1. Automated Parcellation of the Cortex Using Structural Connectome Harmonics.
    Taylor HP; Wu Z; Wu Y; Shen D; Zhang H; Yap PT
    Med Image Comput Comput Assist Interv; 2019 Oct; 11766():475-483. PubMed ID: 34223562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Connectivity-Driven Brain Parcellation Using Ensemble Clustering.
    Kurmukov A; Mussabaeva A; Denisova Y; Moyer D; Jahanshad N; Thompson PM; Gutman BA
    Brain Connect; 2020 May; 10(4):183-194. PubMed ID: 32264696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using connectomics for predictive assessment of brain parcellations.
    Albers KJ; Ambrosen KS; Liptrot MG; Dyrby TB; Schmidt MN; Mørup M
    Neuroimage; 2021 Sep; 238():118170. PubMed ID: 34087365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hierarchical method for whole-brain connectivity-based parcellation.
    Moreno-Dominguez D; Anwander A; Knösche TR
    Hum Brain Mapp; 2014 Oct; 35(10):5000-25. PubMed ID: 24740833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-modal multi-resolution atlas of the human neonatal cerebral cortex based on microstructural similarity.
    Li M; Xu X; Cao Z; Chen R; Zhao R; Zhao Z; Dang X; Oishi K; Wu D
    Neuroimage; 2023 May; 272():120071. PubMed ID: 37003446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncovering Cortical Units of Processing From Multi-Layered Connectomes.
    Albers KJ; Liptrot MG; Ambrosen KS; Røge R; Herlau T; Andersen KW; Siebner HR; Hansen LK; Dyrby TB; Madsen KH; Schmidt MN; Mørup M
    Front Neurosci; 2022; 16():836259. PubMed ID: 35360166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graph Learning for Cortical Parcellation from Tensor Decompositions of Resting-State fMRI.
    Liu Y; Li J; Wisnowski JL; Leahy RM
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint Spectral Decomposition for the Parcellation of the Human Cerebral Cortex Using Resting-State fMRI.
    Arslan S; Parisot S; Rueckert D
    Inf Process Med Imaging; 2015; 24():85-97. PubMed ID: 26221668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Coarse to Fine-Grained Parcellation of the Cortical Surface Using a Fiber-Bundle Atlas.
    López-López N; Vázquez A; Houenou J; Poupon C; Mangin JF; Ladra S; Guevara P
    Front Neuroinform; 2020; 14():32. PubMed ID: 33071768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome.
    Aqil M; Atasoy S; Kringelbach ML; Hindriks R
    PLoS Comput Biol; 2021 Jan; 17(1):e1008310. PubMed ID: 33507899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex.
    Arslan S; Ktena SI; Makropoulos A; Robinson EC; Rueckert D; Parisot S
    Neuroimage; 2018 Apr; 170():5-30. PubMed ID: 28412442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parcellation influence on the connectivity-based structure-function relationship in the human brain.
    Messé A
    Hum Brain Mapp; 2020 Apr; 41(5):1167-1180. PubMed ID: 31746083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior.
    Kong R; Yang Q; Gordon E; Xue A; Yan X; Orban C; Zuo XN; Spreng N; Ge T; Holmes A; Eickhoff S; Yeo BTT
    Cereb Cortex; 2021 Aug; 31(10):4477-4500. PubMed ID: 33942058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid high-resolution anatomical MRI atlas with sub-parcellation of cortical gyri using resting fMRI.
    Joshi AA; Choi S; Liu Y; Chong M; Sonkar G; Gonzalez-Martinez J; Nair D; Wisnowski JL; Haldar JP; Shattuck DW; Damasio H; Leahy RM
    J Neurosci Methods; 2022 May; 374():109566. PubMed ID: 35306036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An automated toolchain for quantitative characterisation of structural connectome from MRI based on non-anatomical cortical parcellation.
    Das S; Maharatna K
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5653-5656. PubMed ID: 33019259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity.
    Bryce NV; Flournoy JC; Guassi Moreira JF; Rosen ML; Sambook KA; Mair P; McLaughlin KA
    Neuroimage; 2021 Nov; 243():118487. PubMed ID: 34419594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flexible graphical model for multi-modal parcellation of the cortex.
    Parisot S; Glocker B; Ktena SI; Arslan S; Schirmer MD; Rueckert D
    Neuroimage; 2017 Nov; 162():226-248. PubMed ID: 28889005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal Brain Parcellation Based on Functional and Anatomical Connectivity.
    Wang C; Ng B; Garbi R
    Brain Connect; 2018 Nov; ():. PubMed ID: 30499336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics.
    Fan L; Zhong Q; Qin J; Li N; Su J; Zeng LL; Hu D; Shen H
    Hum Brain Mapp; 2021 Apr; 42(5):1416-1433. PubMed ID: 33283954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subject-Specific Structural Parcellations Based on Randomized AB-divergences.
    Honnorat N; Parker D; Tunç B; Davatzikos C; Verma R
    Med Image Comput Comput Assist Interv; 2017 Sep; 10433():407-415. PubMed ID: 29075681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.