These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34223598)
1. Machine learning for phase behavior in active matter systems. Dulaney AR; Brady JF Soft Matter; 2021 Jul; 17(28):6808-6816. PubMed ID: 34223598 [TBL] [Abstract][Full Text] [Related]
2. Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles. Chacón E; Alarcón F; Ramírez J; Tarazona P; Valeriani C Soft Matter; 2022 Mar; 18(13):2646-2653. PubMed ID: 35302119 [TBL] [Abstract][Full Text] [Related]
3. Phase behavior and surface tension of soft active Brownian particles. Lauersdorf N; Kolb T; Moradi M; Nazockdast E; Klotsa D Soft Matter; 2021 Jul; 17(26):6337-6351. PubMed ID: 34128024 [TBL] [Abstract][Full Text] [Related]
4. Active binary mixtures of fast and slow hard spheres. Kolb T; Klotsa D Soft Matter; 2020 Feb; 16(8):1967-1978. PubMed ID: 31859309 [TBL] [Abstract][Full Text] [Related]
5. Stationary particle currents in sedimenting active matter wetting a wall. Mangeat M; Chakraborty S; Wysocki A; Rieger H Phys Rev E; 2024 Jan; 109(1-1):014616. PubMed ID: 38366426 [TBL] [Abstract][Full Text] [Related]
6. Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System. Caporusso CB; Digregorio P; Levis D; Cugliandolo LF; Gonnella G Phys Rev Lett; 2020 Oct; 125(17):178004. PubMed ID: 33156654 [TBL] [Abstract][Full Text] [Related]
7. Rod-assisted heterogeneous nucleation in active suspensions. Du Y; Jiang H; Hou Z Soft Matter; 2020 Jul; 16(27):6434-6441. PubMed ID: 32588016 [TBL] [Abstract][Full Text] [Related]
8. Phase Diagram of Active Brownian Spheres: Crystallization and the Metastability of Motility-Induced Phase Separation. Omar AK; Klymko K; GrandPre T; Geissler PL Phys Rev Lett; 2021 May; 126(18):188002. PubMed ID: 34018789 [TBL] [Abstract][Full Text] [Related]
9. Phase separation and state oscillation of active inertial particles. Dai C; Bruss IR; Glotzer SC Soft Matter; 2020 Mar; 16(11):2847-2853. PubMed ID: 32104833 [TBL] [Abstract][Full Text] [Related]
10. Clustering and phase separation in mixtures of dipolar and active particles. Maloney RC; Liao GJ; Klapp SHL; Hall CK Soft Matter; 2020 Apr; 16(15):3779-3791. PubMed ID: 32239046 [TBL] [Abstract][Full Text] [Related]
11. Interparticle torques suppress motility-induced phase separation for rodlike particles. van Damme R; Rodenburg J; van Roij R; Dijkstra M J Chem Phys; 2019 Apr; 150(16):164501. PubMed ID: 31042908 [TBL] [Abstract][Full Text] [Related]
12. Dynamical clustering interrupts motility-induced phase separation in chiral active Brownian particles. Ma Z; Ni R J Chem Phys; 2022 Jan; 156(2):021102. PubMed ID: 35032980 [TBL] [Abstract][Full Text] [Related]
13. Active Brownian equation of state: metastability and phase coexistence. Levis D; Codina J; Pagonabarraga I Soft Matter; 2017 Nov; 13(44):8113-8119. PubMed ID: 29105717 [TBL] [Abstract][Full Text] [Related]
14. Dynamic shapes of floppy vesicles enclosing active Brownian particles with membrane adhesion. Iyer P; Gompper G; Fedosov DA Soft Matter; 2023 May; 19(19):3436-3449. PubMed ID: 37132446 [TBL] [Abstract][Full Text] [Related]
15. Three-body correlations and conditional forces in suspensions of active hard disks. Härtel A; Richard D; Speck T Phys Rev E; 2018 Jan; 97(1-1):012606. PubMed ID: 29448434 [TBL] [Abstract][Full Text] [Related]
16. Characterization of MIPS in a suspension of repulsive active Brownian particles through dynamical features. Martin-Roca J; Martinez R; Alexander LC; Diez AL; Aarts DGAL; Alarcon F; Ramírez J; Valeriani C J Chem Phys; 2021 Apr; 154(16):164901. PubMed ID: 33940816 [TBL] [Abstract][Full Text] [Related]
17. The coherent motions of thermal active Brownian particles. Yang C; Zeng Y; Xu S; Zhou X Phys Chem Chem Phys; 2023 May; 25(18):13027-13032. PubMed ID: 37114336 [TBL] [Abstract][Full Text] [Related]
19. Clustering of microswimmers: interplay of shape and hydrodynamics. Theers M; Westphal E; Qi K; Winkler RG; Gompper G Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172 [TBL] [Abstract][Full Text] [Related]
20. Deep learning probability flows and entropy production rates in active matter. Boffi NM; Vanden-Eijnden E Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2318106121. PubMed ID: 38861599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]