These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34223843)

  • 1. Interfacially-adsorbed particles enhance the self-propulsion of oil droplets in aqueous surfactant.
    Cheon SI; Silva LBC; Khair AS; Zarzar LD
    Soft Matter; 2021 Jul; 17(28):6742-6750. PubMed ID: 34223843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of surfactant stabilized oil-in-water emulsions to the addition of particles in an aqueous suspension.
    Katepalli H; Bose A
    Langmuir; 2014 Nov; 30(43):12736-42. PubMed ID: 25312030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of different self-propulsion types of oil droplets based on electrostatic interaction effects.
    Noguchi M; Yamada M; Sawada H
    RSC Adv; 2022 Jun; 12(29):18354-18362. PubMed ID: 35799924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer and particle adsorption at the PDMS droplet-water interface.
    Prestidge CA; Barnes T; Simovic S
    Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-propulsion of aluminum particle-coated Janus droplet in alkaline solution.
    Li M; Li D
    J Colloid Interface Sci; 2018 Dec; 532():657-665. PubMed ID: 30121518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Destabilization of Oil-in-Water Emulsions Stabilized by Non-ionic Surfactants: Effect of Particle Hydrophilicity.
    Katepalli H; Bose A; Hatton TA; Blankschtein D
    Langmuir; 2016 Oct; 32(41):10694-10698. PubMed ID: 27632428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous emulsification and self-propulsion of oil droplets induced by the synthesis of amino acid-based surfactants.
    Nagasaka Y; Tanaka S; Nehira T; Amimoto T
    Soft Matter; 2017 Sep; 13(37):6450-6457. PubMed ID: 28876349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Interaction of Water-in-Oil Emulsion Droplets with Interfacially Active Asphaltenes.
    Shi C; Zhang L; Xie L; Lu X; Liu Q; He J; Mantilla CA; Van den Berg FG; Zeng H
    Langmuir; 2017 Feb; 33(5):1265-1274. PubMed ID: 28081605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle Stabilization of Oil-Fluorocarbon Interfaces and Effects on Multiphase Oil-in-Water Complex Emulsion Morphology and Reconfigurability.
    Cheon SI; Batista Capaverde Silva L; Ditzler R; Zarzar LD
    Langmuir; 2020 Jun; 36(25):7083-7090. PubMed ID: 31991080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically Tuning Attractive and Repulsive Interactions between Solubilizing Oil Droplets.
    Wentworth CM; Castonguay AC; Moerman PG; Meredith CH; Balaj RV; Cheon SI; Zarzar LD
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202204510. PubMed ID: 35678216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible Adsorption of Nanoparticles at Surfactant-Laden Liquid-Liquid Interfaces.
    Smits J; Vieira F; Bisswurn B; Rezwan K; Maas M
    Langmuir; 2019 Aug; 35(34):11089-11098. PubMed ID: 31368712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of Oil-in-Water Emulsions with Noninterfacially Adsorbed Particles.
    Pilapil BK; Jahandideh H; Bryant SL; Trifkovic M
    Langmuir; 2016 Jul; 32(28):7109-16. PubMed ID: 27351486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the interaction mechanism between oil droplets with asphaltenes and solid surfaces using AFM.
    Shi C; Xie L; Zhang L; Lu X; Zeng H
    J Colloid Interface Sci; 2020 Jan; 558():173-181. PubMed ID: 31586737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The response of carbon black stabilized oil-in-water emulsions to the addition of surfactant solutions.
    Katepalli H; John VT; Bose A
    Langmuir; 2013 Jun; 29(23):6790-7. PubMed ID: 23692631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drying kinetics of water droplets stabilized by surfactant molecules or solid particles in a thin non-volatile oil layer.
    Miyazaki H; Inasawa S
    Soft Matter; 2017 Dec; 13(47):8990-8998. PubMed ID: 29160885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional and velocity control of active droplets using a rigid-frame.
    Yamada M; Shigemune H; Maeda S; Sawada H
    RSC Adv; 2019 Dec; 9(69):40523-40530. PubMed ID: 35542662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of oil-particle aggregates: Particle penetration and impact of particle properties and particle-to-oil concentration ratios.
    Ji W; Boufadel M; Zhao L; Robinson B; King T; Lee K
    Sci Total Environ; 2021 Mar; 760():144047. PubMed ID: 33341610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic Janus Liquid Droplets Assembled and Propelled by Electric Field.
    Sindoro M; Granick S
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16773-16776. PubMed ID: 30378736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.
    Banno T; Kuroha R; Toyota T
    Langmuir; 2012 Jan; 28(2):1190-5. PubMed ID: 22149384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.