These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34223874)

  • 1. Response Inhibitory Control Varies with Different Sensory Modalities.
    Ikarashi K; Sato D; Fujimoto T; Edama M; Baba Y; Yamashiro K
    Cereb Cortex; 2022 Jan; 32(2):275-285. PubMed ID: 34223874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stopping ability in younger and older adults: Behavioral and event-related potential.
    Hsieh S; Lin YC
    Cogn Affect Behav Neurosci; 2017 Apr; 17(2):348-363. PubMed ID: 27896714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the stop-signal modality on brain electrical activity associated with suppression of ongoing actions.
    Carrillo-de-la-Peña MT; Bonilla FM; González-Villar AJ
    Biol Psychol; 2019 Apr; 143():85-92. PubMed ID: 30807785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task.
    Schevernels H; Bombeke K; Van der Borght L; Hopf JM; Krebs RM; Boehler CN
    Neuroimage; 2015 Nov; 121():115-25. PubMed ID: 26188262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of proactive and reactive inhibition of saccadic eye movements.
    Talanow T; Kasparbauer AM; Lippold JV; Weber B; Ettinger U
    Brain Imaging Behav; 2020 Feb; 14(1):72-88. PubMed ID: 30298238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How salience enhances inhibitory control: An analysis of electro-cortical mechanisms.
    Kenemans JL; Schutte I; Van Bijnen S; Logemann HNA
    Biol Psychol; 2023 Feb; 177():108505. PubMed ID: 36669616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Temporal Dynamics of Response Inhibition and their Modulation by Cognitive Control.
    Raud L; Huster RJ
    Brain Topogr; 2017 Jul; 30(4):486-501. PubMed ID: 28456867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural differences in the temporal cascade of reactive and proactive control for bilinguals and monolinguals.
    Rainey VR; Stockdale L; Flores-Lamb V; Kahrilas IJ; Mullins TL; Gjorgieva E; Morrison RG; Silton RL
    Psychophysiology; 2021 Jun; 58(6):e13813. PubMed ID: 33719030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common neural processes during action-stopping and infrequent stimulus detection: The frontocentral P3 as an index of generic motor inhibition.
    Waller DA; Hazeltine E; Wessel JR
    Int J Psychophysiol; 2021 May; 163():11-21. PubMed ID: 30659867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response inhibition of children with ADHD in the stop-signal task: an event-related potential study.
    Senderecka M; Grabowska A; Szewczyk J; Gerc K; Chmylak R
    Int J Psychophysiol; 2012 Jul; 85(1):93-105. PubMed ID: 21641941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action Postponing and Restraint Varies among Sensory Modalities.
    Ikarashi K; Sato D; Ochi G; Fujimoto T; Yamashiro K
    Brain Sci; 2022 Nov; 12(11):. PubMed ID: 36421854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioural and ERP indices of response inhibition during a Stop-signal task in children with two subtypes of Attention-Deficit Hyperactivity Disorder.
    Johnstone SJ; Barry RJ; Clarke AR
    Int J Psychophysiol; 2007 Oct; 66(1):37-47. PubMed ID: 17604142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Free won't" of food in overweight and normal-weight adults: Comparison of neurocognitive correlates of intentional and reactive inhibitions.
    Liu X; Liu Y; Song S; Xiang G; Du X; Li Q; Xiao M; Ling Y; Chen H
    Neuropsychologia; 2022 Sep; 174():108351. PubMed ID: 35995241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.
    Popovich C; Staines WR
    Behav Brain Res; 2015 Mar; 281():267-75. PubMed ID: 25549856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific proactive and generic reactive inhibition.
    Kenemans JL
    Neurosci Biobehav Rev; 2015 Sep; 56():115-26. PubMed ID: 26116545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the lateral prefrontal cortex in inhibitory motor control.
    Krämer UM; Solbakk AK; Funderud I; Løvstad M; Endestad T; Knight RT
    Cortex; 2013 Mar; 49(3):837-49. PubMed ID: 22699024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ERP study on proactive and reactive response inhibition in individuals with schizotypy.
    Jia LX; Qin XJ; Cui JF; Zheng Q; Yang TX; Wang Y; Chan RCK
    Sci Rep; 2021 Apr; 11(1):8394. PubMed ID: 33863942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analytical method to separate modality-specific and nonspecific sensory components of event-related potentials.
    Young EL; Mista CA; Jure FA; Andersen OK; Biurrun Manresa JA
    Eur J Neurosci; 2022 Oct; 56(7):5090-5105. PubMed ID: 35983754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological activity underlying inhibitory control processes in normal adults.
    Schmajuk M; Liotti M; Busse L; Woldorff MG
    Neuropsychologia; 2006; 44(3):384-95. PubMed ID: 16095637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.