These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering. Wang P; Song Y; Weir MD; Sun J; Zhao L; Simon CG; Xu HH Dent Mater; 2016 Feb; 32(2):252-63. PubMed ID: 26743965 [TBL] [Abstract][Full Text] [Related]
25. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Ansari S; Chen C; Xu X; Annabi N; Zadeh HH; Wu BM; Khademhosseini A; Shi S; Moshaverinia A Ann Biomed Eng; 2016 Jun; 44(6):1908-20. PubMed ID: 27009085 [TBL] [Abstract][Full Text] [Related]
26. Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels. Van Nieuwenhove I; Salamon A; Adam S; Dubruel P; Van Vlierberghe S; Peters K Carbohydr Polym; 2017 Apr; 161():295-305. PubMed ID: 28189242 [TBL] [Abstract][Full Text] [Related]
27. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Contessi Negrini N; Bonnetier M; Giatsidis G; Orgill DP; Farè S; Marelli B Acta Biomater; 2019 Mar; 87():61-75. PubMed ID: 30654214 [TBL] [Abstract][Full Text] [Related]
28. Extracellular matrix derived by human umbilical cord-deposited mesenchymal stem cells accelerates chondrocyte proliferation and differentiation potential in vitro. Zhang W; Yang J; Zhu Y; Sun X; Guo W; Liu X; Jing X; Guo G; Guo Q; Peng J; Zhu X Cell Tissue Bank; 2019 Sep; 20(3):351-365. PubMed ID: 31218457 [TBL] [Abstract][Full Text] [Related]
29. The three dimensional cues-integrated-biomaterial potentiates differentiation of human mesenchymal stem cells. Park MH; Subbiah R; Kwon MJ; Kim WJ; Kim SH; Park K; Lee K Carbohydr Polym; 2018 Dec; 202():488-496. PubMed ID: 30287027 [TBL] [Abstract][Full Text] [Related]
30. In-situ tissue regeneration through SDF-1α driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect. Cipitria A; Boettcher K; Schoenhals S; Garske DS; Schmidt-Bleek K; Ellinghaus A; Dienelt A; Peters A; Mehta M; Madl CM; Huebsch N; Mooney DJ; Duda GN Acta Biomater; 2017 Sep; 60():50-63. PubMed ID: 28739546 [TBL] [Abstract][Full Text] [Related]
31. Hydrogel-Assisted 3D Model to Investigate the Osteoinductive Potential of MC3T3-Derived Extracellular Vesicles. Holkar K; Kale V; Ingavle G ACS Biomater Sci Eng; 2021 Jun; 7(6):2687-2700. PubMed ID: 34018721 [TBL] [Abstract][Full Text] [Related]
32. Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered oxygen and glucose microenvironments. Naqvi SM; Buckley CT J Anat; 2015 Dec; 227(6):757-66. PubMed ID: 25913845 [TBL] [Abstract][Full Text] [Related]
33. Cell-Free Hydrogel System Based on a Tissue-Specific Extracellular Matrix for In Situ Adipose Tissue Regeneration. Kim JS; Choi JS; Cho YW ACS Appl Mater Interfaces; 2017 Mar; 9(10):8581-8588. PubMed ID: 28233976 [TBL] [Abstract][Full Text] [Related]
34. Human umbilical cord tissue stem cells and neuronal lineages in an injectable caffeic acid-bioconjugated gelatin hydrogel for transplantation. Subbarayan R; Girija DM; Rao SR J Cell Physiol; 2019 Mar; 234(3):1967-1977. PubMed ID: 30144033 [TBL] [Abstract][Full Text] [Related]
35. A novel calcium-accumulating peptide/gelatin in situ forming hydrogel for enhanced bone regeneration. Jo BS; Lee Y; Suh JS; Park YS; Lee HJ; Lee JY; Cho J; Lee G; Chung CP; Park KD; Park YJ J Biomed Mater Res A; 2018 Feb; 106(2):531-542. PubMed ID: 28975732 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of alginate modification effect on cell-matrix interaction, mechanotransduction and chondrogenesis of encapsulated MSCs. Jahanbakhsh A; Nourbakhsh MS; Bonakdar S; Shokrgozar MA; Haghighipour N Cell Tissue Res; 2020 Aug; 381(2):255-272. PubMed ID: 32405685 [TBL] [Abstract][Full Text] [Related]
38. Oxidized alginate hydrogels with the GHK peptide enhance cord blood mesenchymal stem cell osteogenesis: A paradigm for metabolomics-based evaluation of biomaterial design. Klontzas ME; Reakasame S; Silva R; Morais JCF; Vernardis S; MacFarlane RJ; Heliotis M; Tsiridis E; Panoskaltsis N; Boccaccini AR; Mantalaris A Acta Biomater; 2019 Apr; 88():224-240. PubMed ID: 30772514 [TBL] [Abstract][Full Text] [Related]
39. Mechanics-Controlled Dynamic Cell Niches Guided Osteogenic Differentiation of Stem Cells via Preserved Cellular Mechanical Memory. Wei D; Liu A; Sun J; Chen S; Wu C; Zhu H; Chen Y; Luo H; Fan H ACS Appl Mater Interfaces; 2020 Jan; 12(1):260-274. PubMed ID: 31800206 [TBL] [Abstract][Full Text] [Related]
40. Multipotency expression of human adipose stem cells in filament-like alginate and gelatin derivative hydrogel fabricated through visible light-initiated crosslinking. Khanmohammadi M; Nemati S; Ai J; Khademi F Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109808. PubMed ID: 31349492 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]