These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34224329)

  • 1. Drug response hysteresis in the concentration-QTc analysis of early clinical trials.
    Li H; Tong B; Hosmane B; Chiu YL
    J Biopharm Stat; 2021 Sep; 31(5):705-722. PubMed ID: 34224329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of QT/RR hysteresis correction in studies of drug-induced QTc interval changes.
    Malik M; Garnett C; Hnatkova K; Johannesen L; Vicente J; Stockbridge N
    J Pharmacokinet Pharmacodyn; 2018 Jun; 45(3):491-503. PubMed ID: 29651591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and impact of hysteresis when evaluating a drug's QTc effect using concentration-QTc analysis.
    Ferber G; Darpo B; Garnett C; Huang D; Marathe DD; Sun Y; Liu J
    J Pharmacokinet Pharmacodyn; 2021 Apr; 48(2):187-202. PubMed ID: 33118135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing QT/QTc interval prolongation with concentration-QT modeling for Phase I studies: impact of computational platforms, model structures and confidence interval calculation methods.
    Lu J; Li J; Helmlinger G; Al-Huniti N
    J Pharmacokinet Pharmacodyn; 2018 Jun; 45(3):469-482. PubMed ID: 29556866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac risk assessment based on early Phase I data and PK-QTc analysis is concordant with the outcome of thorough QTc trials: an assessment based on eleven drug candidates.
    Gaitonde P; Huh Y; Darpo B; Ferber G; Heimann G; Li J; Lu K; Sebastien B; Tsai K; Riley S
    J Pharmacokinet Pharmacodyn; 2019 Dec; 46(6):617-626. PubMed ID: 31667657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scientific white paper on concentration-QTc modeling.
    Garnett C; Bonate PL; Dang Q; Ferber G; Huang D; Liu J; Mehrotra D; Riley S; Sager P; Tornoe C; Wang Y
    J Pharmacokinet Pharmacodyn; 2018 Jun; 45(3):383-397. PubMed ID: 29209907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentration-QTc analysis for single arm studies.
    Orihashi Y; Ohwada S; Kumagai Y
    J Pharmacokinet Pharmacodyn; 2021 Apr; 48(2):203-211. PubMed ID: 33512637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical issues of QT prolongation assessment based on linear concentration modeling.
    Tsong Y; Shen M; Zhong J; Zhang J
    J Biopharm Stat; 2008; 18(3):564-84. PubMed ID: 18470764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. International Conference on Harmonisation; guidance on E14 Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs; availability. Notice.
    Food and Drug Administration, HHS
    Fed Regist; 2005 Oct; 70(202):61134-5. PubMed ID: 16237860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assay sensitivity in "Hybrid thorough QT/QTc (TQT)" study.
    Huang DP; Chen J; Dang Q; Tsong Y
    J Biopharm Stat; 2019; 29(2):378-384. PubMed ID: 30346877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are women more susceptible than men to drug-induced QT prolongation? Concentration-QTc modelling in a phase 1 study with oral rac-sotalol.
    Darpo B; Karnad DR; Badilini F; Florian J; Garnett CE; Kothari S; Panicker GK; Sarapa N
    Br J Clin Pharmacol; 2014 Mar; 77(3):522-31. PubMed ID: 23819796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bias and variance evaluation of QT interval correction methods.
    Wang Y; Pan G; Balch A
    J Biopharm Stat; 2008; 18(3):427-50. PubMed ID: 18470754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Phase 1 study design on estimation of QT interval prolongation risk using exposure-response analysis.
    Tsamandouras N; Duvvuri S; Riley S
    J Pharmacokinet Pharmacodyn; 2019 Dec; 46(6):605-616. PubMed ID: 31664592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based evaluation of drug-induced QTc prolongation for compounds in early development.
    Dubois VF; Yu H; Danhof M; Della Pasqua O;
    Br J Clin Pharmacol; 2015 Jan; 79(1):148-61. PubMed ID: 25099645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A powerful test for the maximum treatment effect in thorough QT/QTc studies.
    Deng Y; Chen F; Li Y; Qian K; Wang R; Zhou XH
    Stat Med; 2021 Apr; 40(8):1947-1959. PubMed ID: 33463746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is a thorough QTc study necessary? The role of modeling and simulation in evaluating the QTc prolongation potential of drugs.
    Rohatagi S; Carrothers TJ; Kuwabara-Wagg J; Khariton T
    J Clin Pharmacol; 2009 Nov; 49(11):1284-96. PubMed ID: 19734373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heart rate correction models to detect QT interval prolongation in novel pharmaceutical development.
    Markert M; Shen R; Trautmann T; Guth B
    J Pharmacol Toxicol Methods; 2011; 64(1):25-41. PubMed ID: 21635956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of baseline measurement on the change from baseline in QTc intervals.
    Tian H; Natarajan J
    J Biopharm Stat; 2008; 18(3):542-52. PubMed ID: 18470762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed effects in the exposure-response analysis of clinical QTc trials.
    Glomb P; Ring A
    J Biopharm Stat; 2012; 22(2):387-400. PubMed ID: 22251181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacokinetic-pharmacodynamic modeling in the data analysis and interpretation of drug-induced QT/QTc prolongation.
    Piotrovsky V
    AAPS J; 2005 Oct; 7(3):E609-24. PubMed ID: 16353940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.