BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 34224734)

  • 1. Opioid receptor system contributes to the acute and sustained antidepressant-like effects, but not the hyperactivity motor effects of ketamine in mice.
    Zhang F; Hillhouse TM; Anderson PM; Koppenhaver PO; Kegen TN; Manicka SG; Lane JT; Pottanat E; Van Fossen M; Rice R; Porter JH
    Pharmacol Biochem Behav; 2021 Sep; 208():173228. PubMed ID: 34224734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation of antidepressant and antisuicidal effects of ketamine by opioid receptor antagonism.
    Williams NR; Heifets BD; Bentzley BS; Blasey C; Sudheimer KD; Hawkins J; Lyons DM; Schatzberg AF
    Mol Psychiatry; 2019 Dec; 24(12):1779-1786. PubMed ID: 31467392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the involvement of opioid system in the antidepressant-like effect of ascorbic acid.
    Moretti M; Ribeiro CM; Neis VB; Bettio LEB; Rosa PB; Rodrigues ALS
    Naunyn Schmiedebergs Arch Pharmacol; 2018 Feb; 391(2):169-176. PubMed ID: 29222646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antidepressant-like effects of ascorbic acid and ketamine involve modulation of GABAA and GABAB receptors.
    Rosa PB; Neis VB; Ribeiro CM; Moretti M; Rodrigues AL
    Pharmacol Rep; 2016 Oct; 68(5):996-1001. PubMed ID: 27423525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creatine, similarly to ketamine, affords antidepressant-like effects in the tail suspension test via adenosine A₁ and A2A receptor activation.
    Cunha MP; Pazini FL; Rosa JM; Ramos-Hryb AB; Oliveira Á; Kaster MP; Rodrigues AL
    Purinergic Signal; 2015 Jun; 11(2):215-27. PubMed ID: 25702084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N,N-dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice.
    Lin JC; Chan MH; Lee MY; Chen YC; Chen HH
    Prog Neuropsychopharmacol Biol Psychiatry; 2016 Nov; 71():7-13. PubMed ID: 27296677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the rapid and sustained antidepressant-like effects of dextromethorphan in mice.
    Saavedra JS; Garrett PI; Honeycutt SC; Peterson AM; White JW; Hillhouse TM
    Pharmacol Biochem Behav; 2020 Oct; 197():173003. PubMed ID: 32755625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice.
    Nguyen L; Matsumoto RR
    Behav Brain Res; 2015 Dec; 295():26-34. PubMed ID: 25804358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TAK-653, an AMPA receptor potentiator with minimal agonistic activity, produces an antidepressant-like effect with a favorable safety profile in rats.
    Hara H; Suzuki A; Kunugi A; Tajima Y; Yamada R; Kimura H
    Pharmacol Biochem Behav; 2021 Dec; 211():173289. PubMed ID: 34655652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overlap in the neural circuitry and molecular mechanisms underlying ketamine abuse and its use as an antidepressant.
    Kokane SS; Armant RJ; Bolaños-Guzmán CA; Perrotti LI
    Behav Brain Res; 2020 Apr; 384():112548. PubMed ID: 32061748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression.
    Koike H; Iijima M; Chaki S
    Behav Brain Res; 2011 Oct; 224(1):107-11. PubMed ID: 21669235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ketamine: The final frontier or another depressing end?
    Sial OK; Parise EM; Parise LF; Gnecco T; Bolaños-Guzmán CA
    Behav Brain Res; 2020 Apr; 383():112508. PubMed ID: 32017978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of Antidepressant Effects of Ketamine by Opioid Receptor Antagonism.
    Williams NR; Heifets BD; Blasey C; Sudheimer K; Pannu J; Pankow H; Hawkins J; Birnbaum J; Lyons DM; Rodriguez CI; Schatzberg AF
    Am J Psychiatry; 2018 Dec; 175(12):1205-1215. PubMed ID: 30153752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors.
    Maeng S; Zarate CA; Du J; Schloesser RJ; McCammon J; Chen G; Manji HK
    Biol Psychiatry; 2008 Feb; 63(4):349-52. PubMed ID: 17643398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression.
    Koike H; Fukumoto K; Iijima M; Chaki S
    Behav Brain Res; 2013 Feb; 238():48-52. PubMed ID: 23098797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mediation of the behavioral effects of ketamine and (2R,6R)-hydroxynorketamine in mice by kappa opioid receptors.
    Wulf HA; Browne CA; Zarate CA; Lucki I
    Psychopharmacology (Berl); 2022 Jul; 239(7):2309-2316. PubMed ID: 35459958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms for the antidepressant-like effects of a low-dose ketamine treatment in a DFP-based rat model for Gulf War Illness.
    Ribeiro ACR; Zhu J; Kronfol MM; Jahr FM; Younis RM; Hawkins E; McClay JL; Deshpande LS
    Neurotoxicology; 2020 Sep; 80():52-59. PubMed ID: 32592718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of persistent effects of ketamine in rodent models of depression.
    Popik P; Kos T; Sowa-Kućma M; Nowak G
    Psychopharmacology (Berl); 2008 Jun; 198(3):421-30. PubMed ID: 18458881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of NMDAR antagonists in the tetrabenazine test for antidepressants: comparison with the tail suspension test.
    Skolnick P; Kos T; Czekaj J; Popik P
    Acta Neuropsychiatr; 2015 Aug; 27(4):228-34. PubMed ID: 25858023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The novel methoxetamine analogs N-ethylnorketamine hydrochloride (NENK), 2-MeO-N-ethylketamine hydrochloride (2-MeO-NEK), and 4-MeO-N-ethylketamine hydrochloride (4-MeO-NEK) elicit rapid antidepressant effects via activation of AMPA and 5-HT
    Sayson LV; Botanas CJ; Custodio RJP; Abiero A; Kim M; Lee HJ; Kim HJ; Yoo SY; Lee KW; Ryu HW; Acharya S; Kim KM; Lee YS; Cheong JH
    Psychopharmacology (Berl); 2019 Jul; 236(7):2201-2210. PubMed ID: 30891619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.