These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 34224817)

  • 1. Protein S-nitrosylation and oxidation contribute to protein misfolding in neurodegeneration.
    Nakamura T; Oh CK; Zhang X; Lipton SA
    Free Radic Biol Med; 2021 Aug; 172():562-577. PubMed ID: 34224817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders.
    Lipton SA; Gu Z; Nakamura T
    Int Rev Neurobiol; 2007; 82():1-27. PubMed ID: 17678953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases.
    Gu Z; Nakamura T; Lipton SA
    Mol Neurobiol; 2010 Jun; 41(2-3):55-72. PubMed ID: 20333559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-nitrosylation of critical protein thiols mediates protein misfolding and mitochondrial dysfunction in neurodegenerative diseases.
    Nakamura T; Lipton SA
    Antioxid Redox Signal; 2011 Apr; 14(8):1479-92. PubMed ID: 20812868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases.
    Nakamura T; Cho DH; Lipton SA
    Exp Neurol; 2012 Nov; 238(1):12-21. PubMed ID: 22771760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell death: protein misfolding and neurodegenerative diseases.
    Nakamura T; Lipton SA
    Apoptosis; 2009 Apr; 14(4):455-68. PubMed ID: 19130231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases.
    Nakamura T; Lipton SA
    Antioxid Redox Signal; 2008 Jan; 10(1):87-101. PubMed ID: 17961071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics.
    Gandhi J; Antonelli AC; Afridi A; Vatsia S; Joshi G; Romanov V; Murray IVJ; Khan SA
    Rev Neurosci; 2019 May; 30(4):339-358. PubMed ID: 30742586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric Oxide-Dependent Protein Post-Translational Modifications Impair Mitochondrial Function and Metabolism to Contribute to Neurodegenerative Diseases.
    Nakamura T; Lipton SA
    Antioxid Redox Signal; 2020 Apr; 32(12):817-833. PubMed ID: 31657228
    [No Abstract]   [Full Text] [Related]  

  • 10. Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases.
    Nakamura T; Lipton SA
    Cell Death Differ; 2011 Sep; 18(9):1478-86. PubMed ID: 21597461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Influence of Cyclo(His-Pro) on Proteostasis: Impact on Neurodegenerative Diseases.
    Grottelli S; Costanzi E; Peirce MJ; Minelli A; Cellini B; Bellezza I
    Curr Protein Pept Sci; 2018; 19(8):805-812. PubMed ID: 29708066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of nitrosative stress-mediated protein misfolding in neurodegenerative diseases.
    Nakamura T; Lipton SA
    Cell Mol Life Sci; 2007 Jul; 64(13):1609-20. PubMed ID: 17453143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases.
    Nakamura T; Prikhodko OA; Pirie E; Nagar S; Akhtar MW; Oh CK; McKercher SR; Ambasudhan R; Okamoto S; Lipton SA
    Neurobiol Dis; 2015 Dec; 84():99-108. PubMed ID: 25796565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer's and Parkinson's diseases.
    Nakamura T; Lipton SA
    Apoptosis; 2010 Nov; 15(11):1354-63. PubMed ID: 20177970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases.
    Hekmatimoghaddam S; Zare-Khormizi MR; Pourrajab F
    Biofactors; 2017 Nov; 43(6):737-759. PubMed ID: 26899445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders.
    Nakamura T; Oh CK; Zhang X; Tannenbaum SR; Lipton SA
    Antioxid Redox Signal; 2021 Sep; 35(7):531-550. PubMed ID: 33957758
    [No Abstract]   [Full Text] [Related]  

  • 17. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.
    Ciechanover A; Kwon YT
    Exp Mol Med; 2015 Mar; 47(3):e147. PubMed ID: 25766616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration.
    Uehara T; Nakamura T; Yao D; Shi ZQ; Gu Z; Ma Y; Masliah E; Nomura Y; Lipton SA
    Nature; 2006 May; 441(7092):513-7. PubMed ID: 16724068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Quality Control by Molecular Chaperones in Neurodegeneration.
    Ciechanover A; Kwon YT
    Front Neurosci; 2017; 11():185. PubMed ID: 28428740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Walking the tightrope: proteostasis and neurodegenerative disease.
    Yerbury JJ; Ooi L; Dillin A; Saunders DN; Hatters DM; Beart PM; Cashman NR; Wilson MR; Ecroyd H
    J Neurochem; 2016 May; 137(4):489-505. PubMed ID: 26872075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.