BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34225118)

  • 21. Success and failure of colloidal approaches in adhesion of microorganisms to surfaces.
    Perni S; Preedy EC; Prokopovich P
    Adv Colloid Interface Sci; 2014 Apr; 206():265-74. PubMed ID: 24342736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adhesion of B. subtilis spores and vegetative cells onto stainless steel--DLVO theories and AFM spectroscopy.
    Harimawan A; Zhong S; Lim CT; Ting YP
    J Colloid Interface Sci; 2013 Sep; 405():233-41. PubMed ID: 23777862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complete Genome Sequence of the Extremely Thermoacidophilic Archaeon
    Ma YL; Xia JL; Yang Y; Nie ZY; Liu HC; Liu LZ
    Genome Announc; 2017 Jun; 5(25):. PubMed ID: 28642377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-homogeneous biofilm modeling applied to bioleaching processes.
    Olivera-Nappa A; Picioreanu C; Asenjo JA
    Biotechnol Bioeng; 2010 Jul; 106(4):660-76. PubMed ID: 20229512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two step meso-acidophilic bioleaching of chalcopyrite containing ball mill spillage and removal of the surface passivation layer.
    Panda S; Parhi PK; Nayak BD; Pradhan N; Mohapatra UB; Sukla LB
    Bioresour Technol; 2013 Feb; 130():332-8. PubMed ID: 23313677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp.
    Feng G; Cheng Y; Wang SY; Hsu LC; Feliz Y; Borca-Tasciuc DA; Worobo RW; Moraru CI
    Biofouling; 2014; 30(10):1253-68. PubMed ID: 25427545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of biofilm formation on different types of plastic shopping bags: Structural and physicochemical properties.
    Ganesan S; Ruendee T; Kimura SY; Chawengkijwanich C; Janjaroen D
    Environ Res; 2022 Apr; 206():112542. PubMed ID: 34929185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermophilic archaeal community succession and function change associated with the leaching rate in bioleaching of chalcopyrite.
    Zhu W; Xia JL; Yang Y; Nie ZY; Peng AA; Liu HC; Qiu GZ
    Bioresour Technol; 2013 Apr; 133():405-13. PubMed ID: 23454386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LEACHING OF CHALCOPYRITE WITH THIOBACILLUS FERROOXIDANS: EFFECT OF SURFACTANTS AND SHAKING.
    DUNCAN DW; TRUSSELL PC; WALDEN CC
    Appl Microbiol; 1964 Mar; 12(2):122-6. PubMed ID: 14131359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioleaching of two different genetic types of chalcopyrite and their comparative mineralogical assessment.
    Deng S; Gu G; Ji J; Xu B
    Anal Bioanal Chem; 2018 Feb; 410(6):1725-1733. PubMed ID: 29270659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution.
    Liao R; Yang B; Huang X; Hong M; Yu S; Liu S; Wang J; Qiu G
    Chemosphere; 2021 Sep; 279():130516. PubMed ID: 33878694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+.
    Yoshida N; Nakasato M; Ohmura N; Ando A; Saiki H; Ishii M; Igarashi Y
    Curr Microbiol; 2006 Nov; 53(5):406-11. PubMed ID: 17066338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-situ probing of electrochemical dissolution and surface properties of chalcopyrite with implications for the dissolution kinetics and passivation mechanism.
    Wang J; Xie L; Han L; Wang X; Wang J; Zeng H
    J Colloid Interface Sci; 2021 Feb; 584():103-113. PubMed ID: 33059230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic effect of silver on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans.
    Yang B; Zhao C; Luo W; Liao R; Gan M; Wang J; Liu X; Qiu G
    J Hazard Mater; 2020 Jun; 392():122290. PubMed ID: 32092647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current scenario of chalcopyrite bioleaching: a review on the recent advances to its heap-leach technology.
    Panda S; Akcil A; Pradhan N; Deveci H
    Bioresour Technol; 2015 Nov; 196():694-706. PubMed ID: 26318845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revisiting the Microscopic Processes of Biofilm Formation on Organic Carriers: A Study under Variational Shear Stresses.
    Fan X; Zhu SS; Zhang XX; Ren HQ; Huang H
    ACS Appl Bio Mater; 2021 Jul; 4(7):5529-5541. PubMed ID: 35006740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking.
    Bharadwaj A; Ting YP
    Bioresour Technol; 2013 Feb; 130():673-80. PubMed ID: 23334026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite.
    Zhou H; Zhang R; Hu P; Zeng W; Xie Y; Wu C; Qiu G
    J Appl Microbiol; 2008 Aug; 105(2):591-601. PubMed ID: 18422958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impacts of carrier properties, environmental conditions and extracellular polymeric substances on biofilm formation of sieved fine particles from activated sludge.
    Xu Y; Ou Q; Zhou X; He Q; Wu Z; Huang R; Song J; Ma J; Huangfu X
    Sci Total Environ; 2020 Aug; 731():139196. PubMed ID: 32417483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Streptomycin favors biofilm formation by altering cell surface properties.
    Kumar A; Ting YP
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8843-53. PubMed ID: 27568380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.