These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34225141)

  • 21. Effects of seed aerosols on the growth of secondary organic aerosols from the photooxidation of toluene.
    Hao LQ; Wang ZY; Huang MQ; Fang L; Zhang WJ
    J Environ Sci (China); 2007; 19(6):704-8. PubMed ID: 17969643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of NO
    Chen Y; Tan Y; Zheng P; Wang Z; Zou Z; Ho KF; Lee S; Wang T
    Sci Total Environ; 2022 Oct; 842():156908. PubMed ID: 35753484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of products formed from the oxidation of toluene and m-xylene with varying NO
    Srivastava D; Li W; Tong S; Shi Z; Harrison RM
    Chemosphere; 2023 Sep; 334():139002. PubMed ID: 37220797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical Properties of Secondary Organic Aerosol Produced by Photooxidation of Naphthalene under NOx Condition.
    He Q; Li C; Siemens K; Morales AC; Hettiyadura APS; Laskin A; Rudich Y
    Environ Sci Technol; 2022 Apr; 56(8):4816-4827. PubMed ID: 35384654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Secondary organic aerosol formation from high-NO(x) photo-oxidation of low volatility precursors: n-alkanes.
    Presto AA; Miracolo MA; Donahue NM; Robinson AL
    Environ Sci Technol; 2010 Mar; 44(6):2029-34. PubMed ID: 20166655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size distribution of the secondary organic aerosol particles from the photooxidation of toluene.
    Hao LQ; Wang ZY; Huang MQ; Pei SX; Yang Y; Zhang WJ
    J Environ Sci (China); 2005; 17(6):912-6. PubMed ID: 16465876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increasing role of phenolic oxidative branch in daytime oxidation process of aromatics in Chinese haze period.
    Wang F; Liu X; Lv S; Zhang S; Wu C; Liu S; Lei Y; Chen Y; Li R; Wang G
    Sci Total Environ; 2023 Jan; 857(Pt 2):159578. PubMed ID: 36270370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the influence of environmental conditions on secondary organic aerosol formation from a typical biomass burning compound.
    Jiang X; Liu D; Xu L; Tsona NT; Du L
    J Environ Sci (China); 2022 Apr; 114():136-148. PubMed ID: 35459479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrogen-Containing Compounds Enhance Light Absorption of Aromatic-Derived Brown Carbon.
    Yang Z; Tsona NT; George C; Du L
    Environ Sci Technol; 2022 Apr; 56(7):4005-4016. PubMed ID: 35192318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An SOA model for toluene oxidation in the presence of inorganic aerosols.
    Cao G; Jang M
    Environ Sci Technol; 2010 Jan; 44(2):727-33. PubMed ID: 20017537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneous oxidation of isoprene SOA and toluene SOA tracers by ozone.
    Wang R; Huang Y; Cao G
    Chemosphere; 2020 Jun; 249():126258. PubMed ID: 32213391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Secondary organic aerosol formation from the photooxidation of p- and o-xylene.
    Song C; Na K; Warren B; Malloy Q; Cocker DR
    Environ Sci Technol; 2007 Nov; 41(21):7403-8. PubMed ID: 18044518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insight into the Role of NH
    Wang D; Shen Z; Yang X; Huang S; Luo Y; Bai G; Cao J
    Environ Sci Technol; 2024 Mar; 58(9):4281-4290. PubMed ID: 38391182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light Absorption of Secondary Organic Aerosol: Composition and Contribution of Nitroaromatic Compounds.
    Xie M; Chen X; Hays MD; Lewandowski M; Offenberg J; Kleindienst TE; Holder AL
    Environ Sci Technol; 2017 Oct; 51(20):11607-11616. PubMed ID: 28930472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model.
    Choi MS; Qiu X; Zhang J; Wang S; Li X; Sun Y; Chen J; Ying Q
    Environ Sci Technol; 2020 Nov; 54(21):13409-13418. PubMed ID: 33074656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermediate-volatility organic compounds: a potential source of ambient oxidized organic aerosol.
    Presto AA; Miracolo MA; Kroll JH; Worsnop DR; Robinson AL; Donahue NM
    Environ Sci Technol; 2009 Jul; 43(13):4744-9. PubMed ID: 19673260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into the Formation and Evolution of Individual Compounds in the Particulate Phase during Aromatic Photo-Oxidation.
    Pereira KL; Hamilton JF; Rickard AR; Bloss WJ; Alam MS; Camredon M; Ward MW; Wyche KP; Muñoz A; Vera T; Vázquez M; Borrás E; Ródenas M
    Environ Sci Technol; 2015 Nov; 49(22):13168-78. PubMed ID: 26473383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH affects the aqueous-phase nitrate-mediated photooxidation of phenolic compounds: implications for brown carbon formation and evolution.
    Yang J; Au WC; Law H; Leung CH; Lam CH; Nah T
    Environ Sci Process Impacts; 2023 Feb; 25(2):176-189. PubMed ID: 35293417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of Aromatic Secondary Organic Aerosol Using a Molecular Tracer-A Chemical Transport Model Assessment.
    Zhang J; He X; Gao Y; Zhu S; Jing S; Wang H; Yu JZ; Ying Q
    Environ Sci Technol; 2021 Oct; 55(19):12882-12892. PubMed ID: 34523345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of ammonium sulfate aerosol on the photochemical reaction of toluene/ NO(x)/air mixture].
    Wu S; Hao JM; Lü ZF; Zhao Z; Li JH
    Huan Jing Ke Xue; 2007 Jun; 28(6):1183-7. PubMed ID: 17674719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.