These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
719 related articles for article (PubMed ID: 34225240)
1. Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms. Chong J; Tjurin P; Niemelä M; Jämsä T; Farrahi V Gait Posture; 2021 Sep; 89():45-53. PubMed ID: 34225240 [TBL] [Abstract][Full Text] [Related]
2. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy. Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154 [TBL] [Abstract][Full Text] [Related]
3. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments. Farrahi V; Muhammad U; Rostami M; Oussalah M Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729 [TBL] [Abstract][Full Text] [Related]
4. Feature selection for elderly faller classification based on wearable sensors. Howcroft J; Kofman J; Lemaire ED J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724 [TBL] [Abstract][Full Text] [Related]
5. Upper-Limb Motion Recognition Based on Hybrid Feature Selection: Algorithm Development and Validation. Li Q; Liu Y; Zhu J; Chen Z; Liu L; Yang S; Zhu G; Zhu B; Li J; Jin R; Tao J; Chen L JMIR Mhealth Uhealth; 2021 Sep; 9(9):e24402. PubMed ID: 34473067 [TBL] [Abstract][Full Text] [Related]
6. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data. Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107 [TBL] [Abstract][Full Text] [Related]
7. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines. Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352 [TBL] [Abstract][Full Text] [Related]
8. A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification. Mandal M; Singh PK; Ijaz MF; Shafi J; Sarkar R Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451013 [TBL] [Abstract][Full Text] [Related]
9. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images. Ferjaoui R; Cherni MA; Boujnah S; Kraiem NEH; Kraiem T Comput Methods Programs Biomed; 2021 Sep; 209():106320. PubMed ID: 34390938 [TBL] [Abstract][Full Text] [Related]
12. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
13. The Classification of Rice Blast Resistant Seed Based on Ranman Spectroscopy and SVM. He Y; Zhang W; Ma Y; Li J; Ma B Molecules; 2022 Jun; 27(13):. PubMed ID: 35807337 [TBL] [Abstract][Full Text] [Related]
15. A comparative study on feature selection for a risk prediction model for colorectal cancer. Cueto-López N; García-Ordás MT; Dávila-Batista V; Moreno V; Aragonés N; Alaiz-Rodríguez R Comput Methods Programs Biomed; 2019 Aug; 177():219-229. PubMed ID: 31319951 [TBL] [Abstract][Full Text] [Related]
16. Wrapper method for feature selection to classify cardiac arrhythmia. Mustaqeem A; Anwar SM; Majid M; Khan AR Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3656-3659. PubMed ID: 29060691 [TBL] [Abstract][Full Text] [Related]
17. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status. Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122 [TBL] [Abstract][Full Text] [Related]
18. Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models. Jalali-Najafabadi F; Stadler M; Dand N; Jadon D; Soomro M; Ho P; Marzo-Ortega H; Helliwell P; Korendowych E; Simpson MA; Packham J; Smith CH; Barker JN; McHugh N; Warren RB; Barton A; Bowes J; ; Sci Rep; 2021 Dec; 11(1):23335. PubMed ID: 34857774 [TBL] [Abstract][Full Text] [Related]
19. Machine learning-based classification of the movements of children with profound or severe intellectual or multiple disabilities using environment data features. Herbuela VRDM; Karita T; Furukawa Y; Wada Y; Toya A; Senba S; Onishi E; Saeki T PLoS One; 2022; 17(6):e0269472. PubMed ID: 35771797 [TBL] [Abstract][Full Text] [Related]
20. Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis. Lin YT; Chu CY; Hung KS; Lu CH; Bednarczyk EM; Chen HY Comput Methods Programs Biomed; 2022 Oct; 225():107028. PubMed ID: 35930862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]