These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 3422557)
21. Nuclear magnetic resonance and molecular genetic studies of the membrane-bound D-lactate dehydrogenase of Escherichia coli. Rule GS; Pratt EA; Simplaceanu V; Ho C Biochemistry; 1987 Jan; 26(2):549-56. PubMed ID: 3548821 [TBL] [Abstract][Full Text] [Related]
22. Engineering surface loops of proteins--a preferred strategy for obtaining new enzyme function. el Hawrani AS; Moreton KM; Sessions RB; Clarke AR; Holbrook JJ Trends Biotechnol; 1994 May; 12(5):207-11. PubMed ID: 7764905 [TBL] [Abstract][Full Text] [Related]
23. The engineering of a more thermally stable lactate dehydrogenase by reduction of the area of a water-accessible hydrophobic surface. Wigley DB; Clarke AR; Dunn CR; Barstow DA; Atkinson T; Chia WN; Muirhead H; Holbrook JJ Biochim Biophys Acta; 1987 Nov; 916(1):145-8. PubMed ID: 3663683 [TBL] [Abstract][Full Text] [Related]
24. Threonine 246 at the active site of the L-lactate dehydrogenase of Bacillus stearothermophilus is important for catalysis but not for substrate binding. Sakowicz R; Kallwass HK; Parris W; Kay CM; Jones JB; Gold M Biochemistry; 1993 Nov; 32(47):12730-5. PubMed ID: 8251493 [TBL] [Abstract][Full Text] [Related]
25. Guided evolution of enzymes with new substrate specificities. el Hawrani AS; Sessions RB; Moreton KM; Holbrook JJ J Mol Biol; 1996 Nov; 264(1):97-110. PubMed ID: 8950270 [TBL] [Abstract][Full Text] [Related]
26. On the effect on specificity of Thr246----Gly mutation in L-lactate dehydrogenase of Bacillus sterothermophilus. Bur D; Clarke T; Friesen JD; Gold M; Hart KW; Holbrook JJ; Jones JB; Luyten MA; Wilks HM Biochem Biophys Res Commun; 1989 May; 161(1):59-63. PubMed ID: 2499337 [TBL] [Abstract][Full Text] [Related]
27. Dissecting the contributions of a specific side-chain interaction to folding and catalysis of Bacillus stearothermophilus lactate dehydrogenase. Nicholls DJ; Wood IS; Nobbs TJ; Clarke AR; Holbrook JJ; Atkinson T; Scawen MD Eur J Biochem; 1993 Mar; 212(2):447-55. PubMed ID: 8444183 [TBL] [Abstract][Full Text] [Related]
28. An investigation of the contribution made by the carboxylate group of an active site histidine-aspartate couple to binding and catalysis in lactate dehydrogenase. Clarke AR; Wilks HM; Barstow DA; Atkinson T; Chia WN; Holbrook JJ Biochemistry; 1988 Mar; 27(5):1617-22. PubMed ID: 3365414 [TBL] [Abstract][Full Text] [Related]
29. A strong carboxylate-arginine interaction is important in substrate orientation and recognition in lactate dehydrogenase. Hart KW; Clarke AR; Wigley DB; Waldman AD; Chia WN; Barstow DA; Atkinson T; Jones JB; Holbrook JJ Biochim Biophys Acta; 1987 Aug; 914(3):294-8. PubMed ID: 3113484 [TBL] [Abstract][Full Text] [Related]
30. Evidence for temperature-dependent conformational changes in the L-lactate dehydrogenase from Bacillus stearothermophilus. Kotik M; Zuber H Biochemistry; 1992 Sep; 31(34):7787-95. PubMed ID: 1510965 [TBL] [Abstract][Full Text] [Related]
32. Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Strambini GB; Gabellieri E; Gonnelli M; Rahuel-Clermont S; Branlant G Biophys J; 1998 Jun; 74(6):3165-72. PubMed ID: 9635769 [TBL] [Abstract][Full Text] [Related]
33. Structure and function of L-lactate dehydrogenases from thermophilic and mesophilic bacteria, X. Analysis of structural elements responsible for the differences in thermostability and activation by fructose 1,6-bisphosphate in the lactate dehydrogenases from B. stearothermophilus and B. caldolyticus by protein engineering. Zülli F; Weber H; Zuber H Biol Chem Hoppe Seyler; 1990 Aug; 371(8):655-62. PubMed ID: 2206453 [TBL] [Abstract][Full Text] [Related]
34. A single amino acid substitution in lactate dehydrogenase improves the catalytic efficiency with an alternative coenzyme. Feeney R; Clarke AR; Holbrook JJ Biochem Biophys Res Commun; 1990 Jan; 166(2):667-72. PubMed ID: 2302233 [TBL] [Abstract][Full Text] [Related]
35. Correlation of the enzyme activities of Bacillus stearothermophilus lactate dehydrogenase on three substrates with the results of molecular dynamics/energy minimization conformational searching. Dafforn TR; Badcoe IG; Sessions RB; el Hawrani AS; Holbrook JJ Proteins; 1997 Oct; 29(2):228-39. PubMed ID: 9329087 [TBL] [Abstract][Full Text] [Related]
36. The importance of arginine 171 in substrate binding by Bacillus stearothermophilus lactate dehydrogenase. Hart KW; Clarke AR; Wigley DB; Chia WN; Barstow DA; Atkinson T; Holbrook JJ Biochem Biophys Res Commun; 1987 Jul; 146(1):346-53. PubMed ID: 3606622 [TBL] [Abstract][Full Text] [Related]
37. Improved partitioning in aqueous two-phase system of tyrosine-tagged recombinant lactate dehydrogenase. Fexby S; Bülow L Protein Expr Purif; 2002 Jul; 25(2):263-9. PubMed ID: 12135559 [TBL] [Abstract][Full Text] [Related]
38. Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus. Shimozawa Y; Himiyama T; Nakamura T; Nishiya Y Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 34850194 [TBL] [Abstract][Full Text] [Related]
39. Active-Loop Dynamics within the Michaelis Complex of Lactate Dehydrogenase from Bacillus stearothermophilus. Nie B; Lodewyks K; Deng H; Desamero RZ; Callender R Biochemistry; 2016 Jul; 55(27):3803-14. PubMed ID: 27319381 [TBL] [Abstract][Full Text] [Related]
40. Protein engineering tests of a homology model of Plasmodium falciparum lactate dehydrogenase. Hewitt CO; Sessions RB; Dafforn TR; Holbrook JJ Protein Eng; 1997 Jan; 10(1):39-44. PubMed ID: 9051732 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]